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Abstract—A new method for accurately determining the trans-
mission response of frequency-translating devices (FTD’s) is pre-
sented. The absolute amplitude and phase of the FTD under test
is obtained using a vector network analyzer (VNA) and two test
FTD’s, where one FTD must have reciprocal frequency response
characteristics. The characterization of single-sideband (SSB)
FTD’s is obtained in a straightforward manner by combining
data from three VNA two-port swept measurements. The char-
acterization of double-sideband (DSB) FTD’s can be performed in
the same manner as for SSB FTD’s, or, more accurately, by com-
bining data from six two-port swept baseband measurements. A
complete analysis of the characterization method using low-pass
equivalent (LPE) signals and systems is presented, along with the
development of the appropriate data reduction procedures needed
to arrive at the de-embedded LPE FTD transmission responses.
The validation and accuracy of the method is demonstrated with
results for both SSB and DSB FTD’s operating at 20 GHz.

1. INTRODUCTION

HE MEASUREMENT of the transmission response of
devices in a communications channel is essential for
accurate systems modeling. Both the amplitude and phase re-
sponse are needed to assess the extent of signal distortion. The
most common tool for characterizing nonfrequency-translating
components is the vector network analyzer (VNA). Due to
their design and error correction capabilities, they are very fast
and accurate. Frequency-translating devices (FTD’s), such as
mixers, are more difficult to characterize due to the frequency
offset between input and output, and hence cannot be measured
by a VNA alone. The technique described in this paper uses
test FTD’s (which we will take to be mixers for the rest of this
paper) so that the frequency at the reference and test channels
is the same. In this way, VNA’s can be used to characterize
FTD’s with accuracies near those obtained for non-FTD’s.
The most common FTD measurement technique uses a
network analyzer and a reference test mixer to obtain the
amplitude and phase match between FID’s [1]. This technique
is limited in that it only provides the absolute difference be-
tween FTD’s over a specified frequency range. In an extension
of this technique, the transmission response of an FTD can
be estimated relative to a “gold standard.” The disadvantage
of this approach is that the accuracy will always be limited
to how well the standard has been characterized. Scalar
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network analyzers can be configured to accurately obtain the
conversion loss of FID’s [2]. However, this technique does
not completely characterize an FTD since phase information
is not included. A technique has recently been developed that
uses a microwave transition analyzer (MTA) [3]. The MTA
technique uses AM or FM envelope delay to characterize
SSB FID’s to 40 GHz, without the need for reference or
test mixers. As a result, this technique has the additional
capability of characterizing FTD’s with inaccessible internal
local oscillators (LO’s). Compared to the new technique
described in this paper, the limitations of the MTA technique
are that it cannot characterize DSB FTD’s and exhibits lower
measurement speed and accuracy for SSB FTD’s [4].

This paper presents a new method for accurately obtaining
the transmission response of FTD’s, which can range from
a simple mixer to a complete communications channel with
offset frequencies. The technique uses the VNA and provides
an inferred response based on several measurements involving
the swapping of test mixers. Only two test mixers are required
in addition to the device-under-test (DUT), and one FTD
must provide reciprocal frequency response characteristics. In
a typical communications channel, FTD’s are often operated
as single-sideband (SSB) mixers in frequency converters.
However, FTD’s are also often used as double-sideband (DSB)
mixers in modulators and demodulators. For example, in a
biphase-shift-keying modulator, a DSB mixer is often used
to upconvert a baseband digital signal. The method described
in this paper applies to both SSB and DSB FTD’s. This is
the only method known by the authors for characterizing both
the amplitude and phase response of a DSB FTD. It will be
shown that the measurement of SSB FTD’s can be performed
quickly and accurately with only three VNA measurements.
The measurement of DSB FTD’s can be accomplished in
two ways, defined by the choice of frequency range for the
VNA swept measurement. The paper covers the test system
configuration, signal analysis, and measurement results for this
new approach. The validation and accuracy of the approach
is demonstrated with results for both SSB and DSB FID’s
operating at 20 GHz.

II. TEST SYSTEM CONFIGURATION

The test setup for the measurement of FTD’s is shown in
Fig. 1. For our work, we used a standard HP 8510C VNA
which is capable of measurements from 0.05 to 50 GHz.

0018-9480/96$05.00 © 1996 IEEE
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Fig. 1. General FTD test configuration.

In addition to the DUT and the VNA, a minimum of two
test mixers, three filters, and four attenuators are used. It
1s recommended that the VNA perform its measurements at
the lower of the two input/output FTD frequencies [e.g., the
intermediate frequency (IF) of a mixer]. The configuration
shown in Fig. 1 is therefore an example of a measurement of
an upconverting DUT. The phase shifter on one LO arm is only
required for one of the two DSB converter characterization
methods. The test mixers are required to translate the first
device’s output back to the original input frequency. The
filters and attenuators are used to minimize measurement
error. The reference plane for the two-port measurement is
located at points A and B. A full two-port calibration allows
for very accurate results because the VNA measurements
automatically incorporate full 12-term error correction. It
should be emphasized that only a transfer function for each
FTD is derived by this method; the VSWR effects between the
two FTD’s are not removed. Thus, these results should only be
applied when the DUT is embedded in a well-matched system.
Note that the technique requires that the DUT either has an
external LO input or provides its internal LO as an output.
This is necessary for the VNA to perform a phase coherent
measurement. All the data collection and analysis presented
here have been fully automated using software routines written
in the LabVIEW®. application [5]. This greatly simplifies the
measurement procedure and reduces the possibility of operator
€ITor.

A. SSB FTD Measurement Description

The transmission response of an SSB DUT can be inferred
from the overall response of the DUT with a combination of
test mixers. A minimum of two test mixers must be used,
and additional test mixers can be used to improve accuracy.
For SSB characterization, the IF filters shown in Fig. 1 are
bandpass. A full two-port VNA measurement provides two
transmission responses (so1 and s12) for each mixer combina-
tion test case. When two test mixers are used, three test cases

IF Filter

provide the following six results:

M,: DUT + Test Mixer 1 (821)
M. Test Mixer 1 4+ DUT (s12)
Mp: DUT + Test Mixer 2 (s21)
Mp: Test Mixer 2 4+ DUT (s12)
Mc:  Test Mixer 1 + Test Mixer 2 (821)
Mcr: Test Mixer 2 + Test Mixer 1 (s12)

where Mx = Mx(w) represents the measured transfer func-
tion. Assuming DUT and test mixer reciprocity, our analysis
will show that eight low-pass equivalent (LLPE) responses can
be calculated for the DUT (to within a fixed phase offset)

s _ {Ba,Ra}+{Rp,Rp}—{Bc,Rc'}
{Rpur}n—1 = 5

)

where R = R(w) represents the amplitude (dB) or phase
(degrees) portion of the corresponding total baseband equiv-
alent measured response M (w + w,,), where w,, is the center
frequency of the sweep; Rpyr is the calculated LPE response
of the DUT; and {Rx, Rx'} means choose one of the de-
rived responses Rx(w) or Rx/(w),X = A,B,C. Equation
(1) applies to upper-sideband (USB) FTD’s where the up-
conversion uses high-side injection and the downconversion
uses low-side injection. For lower-sideband (LL.SB) FID’s, the
upconversion and downconversion use high-side injection, and
thus Rpyr(w) must be replaced by Rpyr(—w) if it is an
amplitude and —Rpyr(—w) if it is a phase.

The application of this technique requires that at least one of
the FTD’s have reciprocal frequency response characteristics.
This means that one of the FTD’s must provide an identical
transmission response whether used as an upconverter or
downconverter. The best way to verify FTD reciprocity is by
checking for the equality of so; and s;2 when combining two
reciprocal FTD’s back-to-back. The topology and application
of a given FTD will determine whether it possesses this
property. We have found that commonly used double- and
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triple-balanced mixers exhibit this property when operated
linearly and their ports are properly terminated. Since these
mixers also provide high dynamic range and multi-octave
bandwidth, they are ideally suited as test mixers for this
technique. Note that for each nonreciprocal FTD used, there
is a subsequent reduction in the number of valid responses
that can be calculated from (1). For example, if test mixer 1
is the only reciprocal device, the only valid DUT response is
calculated by using Rx, X = A,B,C or R, X = A,B,C.
The first set characterizes the DUT as an upconverter, while
the second set characterizes the DUT as a downconverter.
When there is more than one reciprocal device, the accuracy
of the derived DUT response can be increased by averaging
the multiple valid responses that result.

B. DSB FTD Measurement Description

In this case, there are two VNA measurement methods,
delineated by the choice of FTD frequency range (RF or
baseband) for the VNA sweep. In the first method (the RF
DSB method), the RF frequency range is chosen and the same
SSB technique described above can be directly applied. The
same measurement setup shown in Fig. 1 holds here as well,
except that RF bandpass filters would be placed at the VNA
ports instead, and a low-pass filter would be used between the
two DSB FTD IF ports.

In most instances, more accurate results can be obtained
by the baseband DSB method, which uses the baseband FTD
frequency range for the VNA sweep, and requires a minor
modification of the SSB measurement technique. First, using
the same setup shown in Fig. 1, the VNA signal is applied to
the IF ports of the FTD’s and the IF filters at the VNA ports
are low-pass. Second, the back-to-back FTD responses must
be measured at two settings of the phase shifter that are 90°
apart at the L.O frequency, in order to completely characterize
the FTD’s.

The concept behind the baseband DSB method can be
explained as follows. The baseband VNA output signal mixes
with the LO in the DUT to produce both USB and LSB signals.
Both sidebands are downconverted in the test mixer back to
the baseband IF frequency. The sidebands recombine at any
relative phase, based on the setting of the phase shifter. For
example, if one setting of the phase shifter gives a maximum
IF signal at a given IF frequency, then a setting 90° away will
give a minimum IF signal. At the maximum IF signal, the two
sidebands are in-phase, so the IF response is the sum of the two
sideband responses. At the minimum IF signal, the sidebands
are out-of-phase, so the IF response equals the difference of the
two sideband responses. This is only an example; in practice
it is unnecessary to find the maximum IF response—any two
phase settings 90° apart are sufficient.

Our analysis will show that LPE DSB transmission response
of the back-to-back FTD pairs is given by (to within a fixed
.phase offset)

TI{w)

_ { %[MI*(_W) + My (-w)],
7 [Mi(w) + sMu(w)],

w < 0 (LSB response)
w > 0 (USB response)

2
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where the superscript “*” denotes the complex conjugate
operation, 7 is the square root of —1, My(w) is the complex
891 response of the back-to-back FTD pairs at phase shifter
setting I, and My(w) is the complex so; response of the
back-to-back FTID pairs at phase shifter setting II (setting
IT — setting I = 4-90°). Once the USB and LSB response
of the DSB FID are separated using (2), above, the DUT
response can be derived by applying (1) (M replaced by II)
to each sideband independently. Thus for the baseband DSB
method, the measurement process is similar to that performed
for SSB FTD’s except that for each of the three test cases, an
additional measurement and calculation is made. The choice
between the two DSB measurement methods should be based
on achieving the best measurement accuracy and is determined
by the characteristics of the specific FDT’s under test.

C. FTD Measurement Precautions

Taking certain precautions in an FTD test setup can mini-
mize the extent of measurement errors. The first consideration
is the port termination sensitivities of the FTD’s in the test
configuration. Stand-alone mixers will often require special
care in contrast to frequency converter units where isolation is
often provided by filters, isolators, or amplifiers. As indicated
earlier, our measurement technique does not account for errors
due to VSWR interaction between the FTD’s. Consequently,
the VSWR of the test mixers should be low. In addition, it
is known that many broadband mixers are especially sensitive
to reactive port terminations [6]. The IF port is particularly
sensitive since unwanted mixing products can be reflected
back into the mixer generating erroneous secondary IF signals.
Broadband resistive attenuators placed between the FTD’s will
serve to minimize VSWR interaction, as well as terminate spu-
rious mixing products. The attenuation value required is based
on the specific characteristics of the FTD’s and termination,
and is typically 6 to 10 dB. In cases where excessive loss
cannot be tolerated, broadband isolators, diplexers, or constant
impedance filters may be used.

The second measurement consideration is filtering. The RF
filter used between the DUT and the test mixer in Fig. 1 is
required to remove unwanted mixing products. These spurious
signals generated by the DUT would otherwise interact in the
test mixer resulting in measurement error. The filter band-
width should be wider than the desired response bandwidth
yet narrow enough to adequately reject the largest spurious
signals. The response of the filter between the FTD’s and
accompanying attenuators ate included in the measurement
and can be removed mathematically. The filters on the VNA
ports prevent spurious products generated by the mixers from
causing measurement error within the VNA. The response of
these filters and accompanying attenuators is removed by the
calibration process.

III. FTD MODELING AND SIGNAL ANALYSIS

This section will present the analytical foundations for our
technique, beginning with the system modeling of the two
basic FTD classes, followed by a derivation of the frequency
response for cascaded nonfrequency-translating FTD pairs. An
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Fig. 2.  Translator-filter (TF) and filter-translator (FT) forms of the basic FTD model structures. (a) TF SSB model (USB case: the LSB case is entirely
similar). (b) TF DSB model. (c) FT SSB model (USB case: the LSB case is entirely similar). (d) FT DSB model.

LPE transmission response is then defined for each FTD class,
which can be derived from input/output measurements on
cascaded FTD pairs. It will be shown that such a response
-for a given DUT can be calculated from a set of basic linear
algebraic equations.

A. Basic FTD Model

The basic FTD model that forms the basis for our analysis
comes in two classes: 1) the SSB model that represents the
simpler and more common mode of operation for FTD’s and
2) the DSB model whose components can be ascertained in
either of two ways. Furthermore, each class comes in two
forms: 1) the translator-filter (TF) form wherein a perfect
frequency translator is followed by a bandpass filter (which
represents the FTD transmission response characteristics) and
additionally an ideal brickwall filter for the SSB class and
2) a complementary filter-translator (FT) form in which the
bandpass filter is followed by an ideal translator which in
turn is followed by the brickwall filter for the SSB class.
The TF models are used for FTD’s that perform low-pass-to-
bandpass (LP-BP) or bandpass-to-bandpass (BP-BP) transla-
tion, whereas the FT models represent FTD’s with bandpass-

to-low-pass (BP-LP) or BP-BP translations. In practice, SSB -

FTD’s perform BP-BP translations, whereas DSB FTD’s
petform LP-BP and BP-L.P conversions. We emphasize that
the basic filter in the two models representing the imperfect
translation of the FTD is always bandpass, and that both
models can be used for BP-BP translations, the one chosen
usually dictated by symmetry considerations. Fig. 2 illustrates
the TF and FT forms for each model class, and the more
common USB instance for the SSB model, as indicated by the
high-pass brickwall filter H. The LSB case of the SSB model
would contain a low-pass brickwall filter instead. Note from
Fig. 2 that the FT model is a symmetrical reflection of the TF
model for the DSB class, in contrast to the SSB class where
the order of the elements has been rearranged.

We now describe in detail the general FTD model by listing
the elements of each model class, including all assumptions
made.

1) SSB FTD Model:

1) u(t)—Bandlimited input signal that is either baseband
with bandwidth B,, (TF model form only) or bandpass,
centered at w,, satisfying B, < w,, (both model forms).

2) Ideal Multiplier—For the TF model form, provides fre-
quency translation to: (a) the frequency wg for baseband
u(t) where additionally wg > B,, for the LSB case; and
(b) the frequency wq=tw,, for bandpass u(t) where + (—)
corresponds to the USB (LSB). For the FT model form,
only case (b) arises for v(t) instead, with w,, replaced
by w, (which could equal wq). For both model forms,
the constant ¢ represents the arbitrary phase of the
LO relative to time ¢ = 0, and is included to -allow
the general case in which the upconversion and the
downconversion are accomplished with separate LO’s.

3) wv(t)—Translated bandpass output of the ideal multiplier
for the TF model form or the bandpass filter H for the
FT model form.

4) H(w)—Bandpass filter centered at wj, with single-sided
bandwidth By, that filters V(w) for the TF model form,
U(w) for the FT model form, and represents the essential
frequency response characteristic of the FTD.

5) w(t)—Filtered bandpass output of H(w) for the TF
model form or output of the ideal muitiplier for the FT
model form.

6) Hp(w)—Brickwall filter centered at w; used to remove
one of the sidebands of the DSB output from H(w) (TF
model form) or W(w) (FT model form). Explicitly

1 >

Hy(w) = { 0’ {:}JI 2::’ (USB Case) (3a)
1wl v

Hy(w) = (LSB Case)  (3b)
0, |(d| > wp

Note that H, is an ideal high-pass (low-pass) filter for
the USB (LSB) case.
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7) y(t)—Output of the FTD that may be either baseband
(FT model form only) or bandpass (both model forms)
with corresponding bandwidth B, = By, < B,.

2) DSB FTD Model: For this class, the model would sim-
ply consist of elements (1)—(4), and (7) from the SSB FTD
model.

These models will be cascaded to form a nonfrequency-
translating FTD pair and analyzed in the following subsection,
beginning with the more general DSB class, followed by the
simpler special SSB class case.

B. Cascaded FTD Model and Analysis

Fig. 3 provides a block diagram of the proposed cascaded
FTD models that apply to both the SSB and DSB classes, with
both FTD’s being of the same class. Fig. 3(a) shows the model
to be used for all SSB FTD’s and the baseband DSB method,
wherein, without loss of generality, FTD 1 is a TF-type
upconverter, while FTD 2 is an FT-type downconverter. Note
that for SSB FTD’s, FTD 1 can be either USB or LSB, whereas
FTD 2 must be LSB in order to arrive at a nonfrequency-
translating cascade. This model represents the most accurate
measurement configuration since the VNA sweeps the lower
frequency range of the given FTD’s.

Fig. 3(b) represents the model for the RF DSB method,
where the translator forms and conversion directions of FTD 1
and FTD 2 are reversed in order to gain procedural simplicity
with some possible sacrifice in measurement accuracy. In both
models, the harmonic filter H,(w) will be ideal, bandpass or
baseband as appropriate, and such that the frequency content
of the output z(¢) is an untranslated and filtered form of that
for u(t). Also for the sake of generality, two separate 1.LO’s
are shown, coherently locked to the same frequency wy, but
with possibly differing phases 1 and ¢ro caused by path
discrepancies between the master oscillator and the two FTD
LO inputs. Finally, when the model is to be used to represent
the operation of the FTD cascade in the reverse direction, the
harmonic filter in Fig. 3(a) would be placed after the former
input of FTD [ instead, while all FTD’s would be modeled by
the complementary translator form for both FTD cascades.

1) Low-Pass Equivalent Signals and Systems: The analy-
sis to be presented next for each of the FTD classes will
be based on the concept of LPE signals and systems [7]-[9]
that is reminiscent of the complex phasors used for sinusoidal
steady-state analysis. Before proceeding with the FTD model
analysis, we first will briefly review the relevant features of
LPE theory.

For a general real signal z(¢) with a Fourier transform
X(w). we define the analytic signal or preenvelope of z(1)
by the complex signal

2,(t) = x(t) + y2(t) (4a)
where
#1) = Hz(t)] = 2(t) @ Wit - % /_oo t”(_—Ti dr  (4b)

is called the Hilbert transform of z(t), and (® denotes
the convolution operator. Interpreted as a filter, the Hilbert
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(b}

Fig. 3. Cascaded FTD models. The details of the individual FTD boxes have
been provided in Fig. 2. The output filter H,(w) is used to remove unwanted
harmonics 1n the signals produced by the two FT-type FTD’s. (a) Model for
SSB FTD's and DSB FTD’s, the latter measured at baseband. (b) Model for
DSB FTD's measured at RF.

transform is known as a quadrature filter since it introduces a
phase shift of £(7/2) in X(w). It can be shown that in the
frequency domain

Z,(w) = 2X(0)U(w), X(w)=—3X(@)sg(w) ()

where

1, w>0
Ulw) ::{0, w<0"

are the unit step and signum functions, respectively.

Now suppose z(t) is a bandpass signal with double-sided
bandwidth 2B, and centered at w, > B, for positive w. Let
wq be a reference frequency such that w,— B, <wy <w,+ By,
that is, it falls within the bandwidth of X (w) and satisfies

1, w>0

sgn(w) := {_1’ weo ©

> w$+B:B.

wWp =~ 9

(N
The reference frequency wy is usually chosen to be the center
frequency w, for simplicity and since condition (7) will be
automatically satisfied. However, our analysis will need to
allow for the more general choice of wq for the FTD bandpass
filters, since their center frequency wy need not equal the LO
frequency wo that we will choose as the reference frequency
[see right-hand side of Fig. 4(a)]. Under these assumptions, it
follows that z,(¢) in (4) can also be written as

2o () =: B(t)elo! (8a)

where
Z(t) == 2, (t)e w0 (8b)

is termed the LPE signal or the complex envelope of x(t) with
respect to the reference frequency wyp. In view of (5) and (8b),
the Fourier transform X (w) of Z(¢) is given by

X(w) = Zp(w+wo) = 2X (w + wo)U(w + wp).  (8¢)
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Fig. 4. Bandpass to low-pass equivalent filter transformation with respect to
a reference frequency wo. (a) General bandpass filter H(w) with amplitude
component A(w) and phase component ¢ (w) (asymmetric and not frequency
centered about wo ). (b) Low-pass equivalent filter H (w) with corresponding
components A{w) and @{w), and where #(t) and §(t) are the complex
envelopes of the mput (¢) and output y(¢), respectively.

We can now define an LPE system as follows (see Fig. 4).
Suppose z(t) is as just described, and we have a linear system
with real impulse response h(t) corresponding to a general
bandpass filter

Hw)= Ah(w)e”h(“) 9)

with double-sided bandwidth 2B;, centered at wy > Bj and
intersecting the support of X(w) (that is, where it is not
zero), and amplitude and phase components Ay (w) and @p(w),
respectively. Let y(¢) be the bandpass output of the system,
and wyp be a reference frequency lying in the supports of X (w)
and H(w) and satisfying condition (7) for both spectrums.
Then it can be shown that the original bandpass system

y(t) = h(t) ® 2(t) or Y(w)=H(@)X(w) (102
is equivalent to the LPE system
i)=$h @0 o V() =3H@XO@ | o
where from (8c)
ﬁ(w) = Zh(w-i-wo) :2H(w-|—w0)U(w-|-wo) (1)

is the LPE filter referenced to wy.

As can be seen from Fig. 4(b), I (w) can be asymmetrical
about w = 0 in general, and hence will give rise to a complex
impulse response

h(t) = p(t) + a(t) (12)
where the real part p(t) and imaginary part q(t) of
h(t) are called the in-phase and quadrature components,
respectively. Note that in view of (12), we can also decompose
H(w) as

H(w) = P(w) + 1Q(w) (13)
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where P(w) and Q(w) would represent the in-phase and
quadrature components of H{w), respectively, and can readily
be shown to be given by

P(w) = 5[ (w) + B*(~w)],

Qo) = -l (w) - (). (14)
Note that both of these filters will have even amplitude
components and odd phase components since they correspond
to real impulse responses.
We close this subsection with some useful results for our
analysis whose derivation can be found in the Appendix.
i) Suppose the bandpass signal z(t) described above is
specialized to an amplitude and phase modulated signal
given by

z(t) = zp(t) cos(wol + @) — z4(t) sin(wet + o) (15a)
or

x(t) = A (t) coslwot + o + @a(t)] (15b)

where g is an arbitrary constant; z,(t),z,(t), Arn(t).
and ¢, (t) are bandlimited signals with bandwidth B <
wo and related by

|4=(t)] = [wf,(t) + ﬂfﬁ(t)]l/z, po(t) = tan™! [Ig_(t)}

zp(1)
(16a)

z,(t) = Ap(t) cos (), z4(t) = Ag(t)sinp,(t).
(16b)
Then the response y(t) of the general bandpass filter in

(9) to z(¢) in (15) is given by

y(t) = 5lUp(t) cos(wol + @o) — Gq(t) sin(wot + o))

(17a)
where gp,(t) and g,(t) are formed by the following
convolutions of x,(t) and z,(¢) with the real components
p(t) and g(t) of h(t):

p(t) = xp(t) @ p(t) — z4(t) @ ¢(t)
q(t) = w4(t) ® p(t) + zp(t) @ q(t).

(17b)

We can obtain equivalent convolutions with A, () and
. (t) through the use of (16b) in (17b).
For the special case of (15b) in which

0z (t) = @, = constant (18)
we have that
y(t) = 3[0p(t) cos(wot + wo + @)
— 74(t) sin(wot + o + )] (19)
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where

Gp(t) = Ax(t) ® p(b),

Gq(t) = Az(t) @ q(t).

: (19b)
i) The output y(¢) of a general filter H(w), expressed as
in (9), to the input

z(t) = cos(wst + @), @z = constant  (20)

is given by

y(t) = h(t) @ z(t) = An(ws) coswst + @z + (ws)]
(21a)

or expressed in the frequency domain,

Y{w)=H{w)X(w) = H{w)F{cos{wst + py)}
= H(ws)e’?* F{cosw,t} (21b)

where F{-} represents the Fourier transform operator
defined through

FIft)} = Flw) = [ ~ f()e* dt (22)

for any function f(¢) for which the definite integral is
well defined. A result similar to (21) would hold for the
case of a sine function used instead for x(t), noting the
quadrature relation

F{sinwst} = —3F{coswyt}. (23)
2) DSB Cascade Model: Because the VNA utilizes a swept
tone as its stimulus signal for probing a given DUT, we will
take, without loss in generality,
u1(t) = u(t) = coswst (24)
in the cascaded FTD models in Fig. 3 where w; > 0 is the
probing frequency. The goal here is to calculate the output
#(t) as a modulated version of w(t), thus allowing for the
identification of the transmission response of the cascaded
FTD’s that is characterized by the product Hi(w)Hz(w) or
H 1 ((U)H 2 (w)

As a consequence of length constraints and so as not to
be repetitious, we will only treat in detail the mathematical
analysis of the baseband DSB method in this subsection. The
analysis-of the RF DSB method is simpler and quite analogous
in form to that for the baseband version, so that a sketch of
the arguments will suffice.

Referring to Fig. 3(a), the detailed model of FTD 1 is given
in Fig. 2(b), while that for FTD 2 is presented in Fig. 2(d),
with the appropriate subscripts applied to the various model
quantities. Using (24) and Fig. 2(b), we see that

v1(t) = coswst cos(wot + @r1) (25)
will be the output of the multiplier. Note that v1(t) is in the
form of x(¢) in (15b) with

A (t) = coswst, (26)

o =0, () =L
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Because the special case (18) for o, (t) holds here, we have
from (19) to (21a) and (26) that the output y;(¢) of the
bandpass filter H;(w) in terms of its LPE H;(w) is given by

y1(t) = 3 [f1p(t) cos(wot + pr1) — 14(t) sin(wot + ¢r1)]
(272)
where
glp(t) = coswst ® pi(t) = Ap, (ws) coslwst + Pp; (ws)]
G14(t) = coswst ® q1(t) = Ay, (ws) cos[wst + pq, (ws)]
(27b)

and, in accordance with our convention (9), we have written

ﬁl(w) =P (w) + Q1 (w)

=A,, (w)e”“’f’l(w) + 3A 4, (w)e’fa @ (27¢)
which will also hold similarly for Hz(w), below.
Moving on to FTD 2, we have that

Noting that (27a) is already in the form of (15a) with z,(t) =
Fip(t), me(t) = 1014(t), and o = @1, we conclude from
(17), (27b), (28), and result i) of Section I1I-B1) that the output
va(t) of the second bandpass filter Hy(w) is given by

va(t) = %[ﬁzp(t) cos{wot + 1) — Uoq(t) sin(wot + @r2)]

(29a)
where
bap(t) = 3[G1(1) ® p2(t) — G14(t) ® (1))
= %[Aplpfz COS(wSt + (pplpz)
- Aqwz COS(wSt + 90(11(12 )]7 (29‘3)
U2q(t) = 5014 (1) ® pa(t) + §1,(t) @ qa(t)]
= %[Aqu?z COS(wSt + 90(111’2)
- Aquz Cos(wst + Ppigs )] (29¢)
and

Ay = Ak(ws)Al(ws)

, kle sP2,q1, 92}, Kk #L
ort = or(ws) + (pl(ws)} {p1. 92,01, @2} #

(29d)

In anticipation of the upcoming SSB analysis, and for the
sake of a more explicit statement of the frequency translation
operation, we reexpress vo(t) in terms of the frequencies
wo % w, using standard trigonometric product identities as
follows:
v2(t) = é[AP1P2{COS[(wO + ‘%)t + 011 + Ppips]

+ cos[(wo = ws )t + PL1 — Ppip,]}

- Alhqz {COS[(WO + wS)t + o1+ (quqz]

+ cos{(wo — ws)t + ©L1 — Pgiq.|}

- AQ1P2 {Sin[(wo + ws)t + L1+ Sofhpz]

+ sinf(wo — wa)t + P11 — Caipe]}

- AP1<12 {Sin[(wg + ws)t +@r1+ @quz]

+ sin[(wo — ws)t + L1 — ©piga) - (30
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Finally, after passing vg(t) through the second ideal mul-
tiplier to arrive at y2(¢), and filtering out the harmonics at
2wy + w, with the ideal harmonic filter H,(w), assuming that

05w3<% (1)

so that 2w — ws > wp + ws, we find that the output z(t) of
the cascaded DSB model is given by

2(t) = £ {Ap,p,[cos(wst — Apr + ©pp,)
+ cos(wst + Apr + ©pip, )]
— Agrq;[cos(wst — App + ©g1q,)
+ COS(wst + Apr + Y190 )]
— Agip, [sin(wst — Apr + @qip,)
—sin(wst + Apr, + ©g,p,)]
— Ap g [sin(wst — A, + ©p,g,)

— sin(wyt + AQL + ©p1g)]} (32)

where

I Ay = @12 — 911 33)

and we have written the terms in z(¢) so as to match in parallel
with the ones they were derived from in (30) (again with the
upcoming SSB analysis in mind).

We now wish to compute the Fourier transform Z(w) =
Z(ws) of z(t) in (32) and express it as a product of the
transmission response of the FTD pair and F{coswst}, the
Fourier transform of the original probing input tone. Using
result i) of Section III-B), one can determine that

1 - + —
Z(UJS) B E[(‘E{I—’tl& + HPlPQ - thqg - quqQ)
+ J(Hyp, = Hfp, + Hp, gy = H ) )1 F{cos wit}

(34a)

where we have defined the augmented LPE filters

HE .= H, etsder
HZ = A:;@‘Pm ) kL€ {p1,p2 02}, k#1

(34b)

and Ay, pri, and Ay, are as defined in (29d) and (33). From
(34) we conclude that the measured transfer function Mi(ws)
through the test system is given by

Z(ws)
M, —T\Ms)
1(e) F{coswst}
- i%{[lem —Hyg, + 1(Hgyp, + Hp,g, )]6_]A<‘0L
+ [Hp1p2 ~ Hyygo — W Hyp, + quz)]e]AwL}-
(35)

Now from (14), (29d), and (34b), it follows that

Hmpz - quqz =P1P— Q1Q2
= 5 [H1(ws) Ha(ws) + Hi (—ws) H3 (—ws)]
quz - leqz :Ql-P? - P1Q2

= L [H1(we) Ho(ws) — Hy (~ws)H3 (—w,)]
(36)
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so that Mr(w;) in (35) can be more simply expressed by
Mi(ws) = 35 [H1 (ws) Ha(w,)e =724
+ Hi“(__ws) ;(_ws)e]AﬁaLJ. (37)

Becauise the desired product filter H 1(ws)ﬂ2(w3) is gener-
ally asymmetric, it is clear from (37) that one measurement
will not suffice to de-embed it. However, by making a second
measurement of the overall transfer function with the differ-
ence angle Agy, in (33) shifted by +(7/2)—which would
correspond to adjusting the phase shifter on the second LO arm
by +(m/2) (see Fig. 1)—we can retrieve ﬁl(ws)ﬂz(ws) as
needed. Indeed, applying the transformation Agr — Apyp +
7/2 to (37), and using the fact e*7("/2) = £ we conclude
that ‘

Mir(ws) = Mi(ws)|apr—a¢s+(n/2)
= TolH} (—ws) H3 (~wy)e?der
— Hl(ws)Hg(wS)e‘JA‘F’L].

(38)

Finally, by combining Mj{w,) with a +(n/2)-shifted ver-
sion of Mi(ws), that is, +3Myr(w,), we see from (37) and
(38) that

Mi(ws) + JMir(ws) = ge 722 Hy(w,) Ha(w,)  (39)

so that

Hi(w)Ha(w,) =8¢’ [Mi(ws) + jMr(ws)],
0<w, <. (40)

In order to obtain this product for w, < 0, we use the fact that
M; and M7 must correspond to real impulse responses and
hence must satisfy the symmetry property

M,(ws) = M) (—ws), i=TorIlL 41

We thus conclude from (40) and (41) that

Hi(ws)Ha(ws) =877 [My (—ws) + gMfi(—ws)],
- 2w, < 0. (42)

Observe from (40) and (42) that the product response is
uniquely determined from the measurements except for the
fixed phase offset Apy, given in (33). This offset is essentially
of no consequence to performance evaluations, since it is the
shape of the phase versus frequency that is important in these
considerations.

We now finally define the LPE DSB FTD transmission
response TPSB(w) by

TDSB(w) = %INJ(L«}).

(43)

We comment here that the i——factor in (43) derives from the
%-factor normally associated with LPE systems [see (10b)],
and the %-factor coming from the perfect spectral splitting
manifested in the ideal multiplier output.
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Hence, by (40) and (42) we find that

HDSB(“’S) = TPSB(ws)T2l)SB(w5)

5 €789 [M (—ws) + gMy (—ws)],
— B <ws <0

T ) 5 €09 [Mi(ws) + gMir(ws)],
0<ws <

7 (a4)

which will be used in the de-embedding procedure outlined in
Section III-C, below.

For the RF DSB method, we refer to Fig. 3(b) and note that
the bandpass filters that characterize the two FTD’s lie external
to the ideal translation and harmonic filtering that takes place
between them. As a result of this observation, and through
the use of simple spectral arguments, one can demonstrate
that only one measured input/output bandpass transfer function
M(w,) is needed here, and it will be essentially the product
of the bandpass FID filters H;(w,).i = 1,2, except for
factors of % corresponding to energy losses from the two ideal
frequency translations. It can be shown that the LPE DSB
FTD transmission response is again given by (43), whereas the
product LPE response TIPSB(w,) needed for de-embedding is
instead given by

HDSB( ) — TDSB( )TDSB(ws)
_ 1 M )eJAsaL
o < Wo
<ws £ 5 (45)

where M (w;) represents the LPE of M (w,) that will generally
not be symmetrical with respect to w, = 0.

3) SSB Cascade Model Because many of the SSB results
will readily follow from the general analysis done for the
baseband DSB method just presented, our exposition here will
be abridged. We will cover the USB and LSB cases separately.

USB Case: For the sake of reference, the intermediate
signals in the cascaded SSB model are as follows. Referring
to Fig. 2(a), the output v4(¢) of the ideal multiplier will again
be given by (25), while the output of the bandpass filter
H;(w) will again be given by (27). Using standard product
trigonometric identities, wq(¢) can be re-expressed to show
the frequency translation explicitly as

_An {cos|(wo + ws)t + @11 + ¢p,]
+ cos[(wo — ws)t + or1 — @p, |}

(wo + ws )t + @11 + ©4,]

— sinf(wo — ws)t + or1 — ¢4}

w1 (t)

(46)

where we have dropped the w-argument of the amplitudes A;
and phases ¢; (i = p1,q1) of Pi(w) and Q1 (w) for simplicity.
Applying the brickwall filter Hy; (w) in (3a) to wy () in (46),
we have the output y;(¢) of FID 1:

ya(t)

= 1{4p, cos{(wo + ws)t + 011 + 0p,]

Ag, sinf(wo + ws)t + o1 + ¢q, |} 47)
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Moving on to FITD 2 [which is LSB; see Fig. 2(c)], we
have that
us(t) = 1 (t). (48)
At this point, we make an important simplifying observation
that will allow us to derive the output vo(t) of Ha(w) of
the cascaded pair immediately from the DSB case, as well as
obtaining the signals wo(t) and z(¢). Note that in the cascaded
SSB model, the bandpass filter H;(w) is followed by the
brickwall filter Hyq (w), followed finally by the bandpass filter
Hy(w). By linearity, the output of this sequence of filters is
identical to that of the sequence H;(w), H2(w), and Hp; (w).
We thus just need to apply Hp;(w) given by (3a) to the result
v2(t) in (30) to arrive at

v2(t) = l{ pip2 C08[(Wo + We )t + VL1 + Ppyp,]
cos[(wo + ws)t + QL1 + 9]
Agip, sinf(wo + wo)t + ©r1 + ©gips)

Ap gs sinf(wo + wi)t + 0r1 + ©pgs ]}

lh q2

(49)

After passing v»(¢) through the second ideal multiplier to

arrive at ws(t), filtering with the second brickwall filter

Hyz(w) [which is also given by (3b)] will produce y-(t).

Finally, filtering yo(#) with the same harmonic filter H,(w)

as in the DSB case [but without condition (31) needed], (32)
gives

2(t) = 15[ Apips cOS(wst — AL + @p,p,)

- Alhqz COS(“‘)St - A‘/’L + (pqlqz)

- A'Ilpz Sin(wst - A‘:OL + (qupz)

- Aqu Sin(wst - Apr + Ppigs )] (50)
where Agy, is as in (33). It follows that Z(w;) would be as in
(34), but with the H}; terms removed. The measured transfer
function Mj(w,) =: M(w,) would thus in this case be given
by

M(ws) = —1% ﬁl(ws)ﬁZ(ws)e—]A‘T’L

()

where we have used (37). In view of the additional brickwall
filter Hp2(w) of (3b) that is contained in the FTD here, the
analog of (44) is

HUSB(“)S) = TlUSB(Ws)TZUSB("JS)

= M(w,)e??r, ws >0

(52)

where the LPE USB FTD transmission response is defined as

TUSB(w) := iI:I(w)U(w)

(53)

and U(w) is the unit step function given in (6). The product
ITYSB(w,) is suitable for usage in the de-embedding procedure
of Section II-C, below. Hence only one measurement is
needed in this case, in contrast to the previous DSB class.
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LSB Case: In an entirely similar manner, the signal
waveforms for FTD 1 of the LSB case would be as follows:
v1(t) as in (25), wy(¢) as in (27) and (46), while y; (¢) would
be as in (47) with wg + w, replaced by wy — w, and @; by
—@; (i = p1,q1). For FTD 2, we would have that (48) holds
again, va(t) is as in (49) with wy + w, replaced by wy — w,
and @ by —¢p, and z(t) given by

Z(t) = '116'[“41111’2 COS(wst + A‘pL + (pPIPZ)
- AQI‘D cos(wst + AwL + 90(11(12)‘

+ Aqpo Sin(wSt + A(PL + 90!11?2)

- Aplqz Sin(wst + Ach + Ppigz )] (54)

where the harmonic filter H, o(ws) is as before with condition
(31) replaced by

0 <w<wy (55

so that 2wy — ws > w; instead, and Ay is as in (33). Here
Z(w,) would be as in (34) with the H,, terms deleted. The
measured transfer function M (w,) in this case is given by

M(ws) = 5 Hi (—we) Hi (—ws)e?d%r.

(56)

Using the symmetry property (41) and proceeding in a manner
similar to that used for the USB case, the product response
becomes

59 () = TEP ) TH (w,)
= M*(~w,)el’eL

—wy<ws <0

(57)

where the LPE LSB FTD transmission response is defined as

H(w)U(-w).

et NG

C. FTD Transmission Response De-Embedment

We will now detail the de-embedding procedure for deter-
mining the LPE transmission response of a given FID DUT.
Recall that all LPE responses have been referenced to the LO
frequency wq. For those cases in which the sweep is bandpass
in nature and centered at w,, the resulting LPE responses will
also be bandpass and centered at w,,. In order to place all LPE
responses at a common dc center frequency, we introduce an
additional frequency shift of w,,, as can be seen in (1). Thus,
to de-embed this response, we first define

R(w) = { 201og;, A(w,) for the amplitude (59)

(w,,) for the phase

where T(w,) = A(w)e’*) and T(w) generically denotes
the LPE FTD transmission response for any of the sideband
cases given by (43), (53), and (58). Note that the product LPE
transmission response LI(w) = T1(w)T>(w) will thus obey the
relation

Rn(w) = Rl(w) + Rg(w) (60)

for both the amplitude (dB) and the phase (degrees). Assume
that three product transmission responses have been obtained
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as outlined in Section III-B2) and -B3) for three FTD cascades
of three distinct FTD’s of the same sideband type, denoted by
DUT, TM1 (Test Mixer 1), and TM2 (Test Mixer 2). We will
add the superscript “+/—"" to R(w) to represent the upconver-
sion/downconversion response since these will only be equal
if the FTD has reciprocal frequency response characteristics.
Using the measured results described in Sections II-A and II-B
in (44), (45), (52), or (57), and noting property (60), we arrive
at the following relations:

Rfyr + Ry = Ra(w)
R"Jrrlvn + Rpyr = Ra/(w)
RgUT + Ry = Rp(w)
R;‘er + Rpyr = Rp/(w)
ijMl + Rryp = Ro(w)
Riye + Ry = Ror(w) (61)

where Rx (w) corresponds to TTx(w) according to (59), X =
AA" B,B,C,C.

If we assume only one FTD is reciprocal, say TM1, then
Rtyvi = Rpaya = Rrwi. In this case, only three of the
relations in (61) can be used simultaneously to solve for the
DUT response:

Riyr = 5[Ra + Rp - R¢] (62a)
when used as an upconverter, and
BUT = %[RA’ + RB’ — RC’] (62b)

when used as a downconverter. Note that if TM2 was the only
reciprocal FTD, a different set of relations in (61) would then
be chosen to arrive at

(632)
(63b)

R$UT = %[RA + RB - RC’]
RBUT = %[RAI + Rpr — Rcl.

If TM1 and TM2 are both reciprocal FID’s, then R¢c = R¢r.
As a result, both (62) and (63) provide valid solutions for
R%UT. Finally, if all three FTD’s are reciprocal, then the valid
solutions already provided by (62) and (63) will be augmented
by the following:

Ryt =3[Ra + Rp — Rc] (64a)
Rpyr = 3[Ra + Re — Rl (64b)
R$UT = %[RA + Rp: — Rc/] (64¢)
Rpyr = 3[Rar + Re — Re]. (64d)

Since R, = Rpyr = Rpur in this case, there will be
eight valid solutions for the LPE DUT response which has
been previously presented as (1). Note that the phase offset of
(33) is not included in (1), as is evident from (1), (45), (52),
and (57), and the discussion in Sections II-A and -B for the
SSB and RF DSB method cases; and (2) by comparing (2) and
(44) for the baseband DSB method.



2734

«15 : 20

o no
R

9\ \\';,o
| IRERY)

19 . .
-200 -150 -100 -50 0 50 100 150 200
Frequency (MHz)

(=]
(saalbop) aseyd

Amplitude (dB)
3
—

Fig. 5. Eight calculated VNA amplitude and phase responses for a 20 to 8
GHz SSB downconverter. The extremely close agreement of the measurements
indicates the degree of repeatability of the SSB technique, and the frequency
response reciprocity of all three FTD’s used.

IV. MEASUREMENT RESULTS

This section of the paper provides measured results for both
SSB and DSB FTD’s. The validation of the VNA technique is
demonstrated for DUT’s which are typical of those used in mi-
crowave communication systems. Validation of the technique
is demonstrated with SSB FTD’s by comparing results with
another measurement technique using an MTA. Since they. are
the only known techniques for complete, absolute frequency
response characterization of SSB FTD’s, they are compared in
terms of measurement accuracy, complexity, and applicability.
Validation of the baseband DSB method is demonstrated by
determining the response of two DUT’s differing only by the
addition of a bandpass filter and comparing their difference
with a nonfrequency translating VNA measurement of the
same bandpass filter alone. The RF DSB method is in turn
verified by showing its close agreement with the results from
the baseband DSB method.

A. SSB Downconverter Measurement

To demonstrate SSB FTD measurements, a 20 to 8 GHz
downconverter was characterized. Measurements were per-
formed with an HP 8510C VNA using a full two-port calibra-
tion. Low-side L.O injection was used with a frequency of 12
GHz. The measurement bandwidth was 500 MHz, using 101
frequency points. At each frequency point, an averaging factor
of eight was implemented and no data smoothing was applied.
For the test mixers, two triple-balanced mixers (Watkins-
Johnson Model WJ-MZ5010C) with a 1.0 to 15.0 GHz IF
and a 2.0 to 26.0 GHz RF/LO were used. The eight calculated
responses for both the amplitude and phase are shown over
a 400 MHz bandwidth in Fig. 5. The tight grouping between
response curves indicates that the DUT and both test mixers
have reciprocal frequency response characteristics. Therefore
the downconverter can also be used as an upconverter with
the same frequency response. In this case, the most accurate
response for the downconverter can be obtained by averaging
the eight results shown.

B. SSB Measurement Validation

To validate the SSB FTD measurements, the same 20
to 8 GHz frequency converter was characterized using the
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Fig. 6. Comparison of the average of the eight calculated VNA amplitude
and phase responses in Fig. 5 with those measured directly with the MTA.

MTA technique [3]. In the MTA measurements, the envelope
delay technique was used with 2.5 MHz frequency modula-
tion. The measurement procedure has been automated in an
IBASIC program available from Hewlett-Packard (see [3]).
The calibration procedure requires only a through path for
normalization. The accuracy is therefore limited in comparison
to the network analyzer approach where full error correction
is used. For consistency, the measurements were performed
using the same calibration frequency range and amount of
averaging as was used in the VNA measurements. Measure-
ments obtained from the MTA were compared with the average
of the eight calculations from the VNA as shown in Fig. 6.
It is clear that additional trace averaging could have been
used to enhance noise reduction in the MTA measurements.
This improvement would only be obtained at the expense
of increased measurement time. The agreement between the
amplitude and phase response curves was found to be within
1.15 dB and 6.14°, respectively, over the 400 MHz band.
The difference in ripple structure between the measurement
curves is primarily due to the inability of the MTA technique
to remove the effects of VSWR interaction at the measurement
ports.

C. DSB Downconverter Measurement

To demonstrate DSB FTD measurements, a 20 GHz-to-
baseband downconverter (Watkins-Johnson WJ-M52C Mixer)
was characterized. Two- additional WJ-M52C devices were
used as test mixers. As discussed earlier, the VNA mea-
surement can be performed at either the higher (RF) or
lower (baseband) input/output frequency range of the FTD’s.
For completeness, measurement of the FTD under test was
carried out using both DSB methods. The measurements
were performed with an HP 8510C VNA using full two-port
calibrations. For the RF method, the VNA sweep frequency
range for the three required measurements was 18.0 to 22.0
GHz using 401 points. For the baseband method, the VNA
sweep frequency range for the six required measurements
was 0.05 to 2.05 GHz using 201 points. An averaging factor
of eight with no data smoothing was applied for both test
configurations. A comparison of the calculated responses of
the baseband and RF test methods is shown in Figs. 7 and 8,
respectively. The good agreement between the curves indicates
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Fig. 7. Amplitude response comparison of the RF and baseband DSB
measurement techniques for a 20 GHz-to-baseband downconverter. The close
agreement of the curves indicates the consistency of the two-approaches.
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Fig. 8. Phase response comparison for the downconverter in Fig. 7. In this
case, the resulting de-embedded phases were realigned by subtracting out the
starting LO phase offsets. Again, the consistency of the two DSB techniques
is borne out by the close agreement.

~ that both test methods provide valid results for DSB FID’s.
Upon closer inspection, the RF method results are seen to
contain a significant amount of additional broadband noise and
are also clearly more prone to spurious noise spikes. The small
amount of ripple found for the baseband characterization is a
result of VSWR interaction and can be reduced by increasing
the amount of attenuation at the mixer ports. We have found
that with a suitable choice of mixer port attenuation, the
baseband method provides the more accurate results for most
DSB FID’s. :

D. DSB Measurement Validation

A special validation test was devised here since there was
no alternative method known to measure DSB FTD’s. A DSB
FTD with a 20 GHz LO was characterized with the baseband
DSB technique and then the same FTD was re-characterized
with a known linear network on its output. The second FTD
response should be equal to the sum of the first FTD response
and the known added linear network response. The ports of
the FTD and linear network must be well matched, otherwise
VSWR interaction will introduce significant measurement er-
ror. For the DSB validation measurement, the DUT was a DSB
double-balanced mixer (ST Microwave Model MX1026C) and
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Fig. 9. Amplitude response of a ‘K&L 5FV10-20600/T2000-0/0 bandpass
filter derived from baseband DSB measurements compared to a direct VNA
measurement. The. close agreement serves to validate the baseband DSB
measurement technique.

the linear network was a bandpass filter (K&L Microwave
Model 5FV10-20600/T2000) with a center frequency of 20.6
GHz and a 3 dB bandwidth of 2.0 GHz.

The above measurements were performed and the filter
response was derived by subtraction of the two responses.
This derived response was then compared to the direct VNA
measurement of the filter alone. The agreement between the
derived and direct measurement is shown in Figs. 9 and 10 for
the amplitude and phase, respectively, and serves to validate
the technique. The results also validate the technique for
asymmetric FTD’s (note the 600 MHz offset corresponding to
the difference between the LO and filter center frequencies).
Observe that the derived response is the algebraic combination
of twelve separate VNA measurements; six for both of the
times the VNA technique was applied. Despite the build-up
of random and systematic errors caused by combining twelve
measurements, the agreement between the derived and direct
measurement is good, except on the low frequency skirt of the
filter. This disagreement is caused by the frequency offset of
the filter bandcenter relative to the LO. This frequency offset
causes the lower frequency skirt to fold on top of passband
frequencies at baseband. Hence, at baseband, small amplitude
signals from the lower frequency skirt interfere coherently
with large amplitude signals from the filter passband. Small
errors in the measurement of the large amplitude signals
cause large errors in the measurement of the small signals.
This indicates a limitation of the baseband VNA technique
applied to DSB FTDs: the accuracy is reduced if the difference
between sidebands is more than about 10 dB. Together with the
previous comparisons presented in Section IV-C, these tests
constitute a complete validation of both DSB characterization
methods.

V. CONCLUSION

We have described a new method of obtaining the trans-
mission response of FTD’s. Both SSB and DSB FTD’s can
be characterized with accuracies approaching those of VNA
measurements of non-FTD’s. The technique test configuration
has been presented along with general FTD measurement
precautions. A complete detailed mathematical treatment of
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Fig. 10. Phase response of the same bandpass filter as in Fig. 9. Again we
observe a close agreement between the derived and direct measurement of the
response, providing further validation of the baseband DSB technique.

the technique has been presented using the concept of low-pass
equivalent signals and systems. The validation and accuracy
of the technique has been demonstrated with results for both
SSB and DSB frequency converters operating at 20 GHz.
Measurements were compared with the MTA technique for
SSB FTD’s and with nonfrequency-translating components for
DSB FID’s.

APPENDIX
DERIVATION OF RESULTS i) AND it) IN SECTION III-B

i) Given the general amplitude and phase modulated signal
in (15) where the modulation signals are bandlimited as
specified there. By trigonometric identities, (15b) can be
expanded to

5(t) = A, (t) cos @, (£) cos(wot + o)

— Au(D)sinpa () sin(wot +90)  (AD)
from which (16b) follows. From (15a), we see that
X(w) = 5{[Xp(w — wo) + 1X(w — wo)]e™?
+ [Xp(w + wo) + 3 Xg(w + wo)le 7} (A2)
From the first relation in (5), (A.2) becomes
Zp(w) = [Xp(w — wo) + 31X (w — wo)]e??° (A.3)

since X;(w — wg) = 0 for w< 0 and X;(w + wg) = 0 for
w>0,5 = p,q, using the assumption that X;(w) = 0 for
|w] > wo. From (4a) and (A.3), we conclude that

(1) =Tm{ze (1)) = Im{[ap () + g ()] +4}
=, (1) sin(wot + o) + 74(t) cos(wot + @o) (A4)

where Im(-) means the imaginary part. By (4a), (15a), and
(A.4), the preenvelope of z(t) is given by

22(t) = z(b) + g2 (t) = [ap(t) + gz (H)]0tH90)  (A5)
so that by (8b),

Z(t) = [zp(t) + gzq(t)]e?#. (A.6)
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By (4a), (8a), (10b), (12), and (A.6), we find that

y(t) = Re[zy(t)] = Relj(t)e’’] (A7)

where Re(-) means the real part, and

j(t) = 1h(t) @ (1)
=1[p(t) + 29(1)] @ [wp(t) + gaq(t)]e?®
=56/ {[z4(t) ® p(t) — 2(t) ® q(t)]
+ 3lzq(t) ® p(t) + 2p(t) ® ()]}

Putting (A.8) in (A.7) gives (17).

The special case (19) follows from the general result by
noting that z(t) in (15b) with condition (18) holding is a
special case of z(t) in (15a) with

xp(t) = Az (1), xq(t)

Putting (A.9) into (17) immediately gives (19).

ii) Let z(¢) be as in (20) and F and F ! be the forward
and reverse Fourier transform operators. Then for a general
filter H(w), the output is given by

y(t) =h(t) @ =(t) = FH{H(w)X(w)}
=F HH(W) i 6(w — ws) + €77 6(w + w,)]}
:f_l{%[H ws yeT?7 H(w — wy)

+ H(~ws)e 7% 6(w + ws)]}
= 1[H(ws)e’?" /" + H*(ws)e 7= e 145"
=Re[H (w,)e’¥= e?*"]
— RC{A(wS)eJ[wst—l-som +so(ws)]}

(A.8)

0. (A9

wo = Yo + Pz,

TN e

(A.10)

from which (21a) follows. Relation (21b) follows from the
Fourier transform property

F{f(t+1t0)} = " F(w) (A.11)

rewriting the argument of the cosine function as follows:

wst'f"Pa::ws(t'f'gﬂ) =>t0=%
s s

taking f(¢) = cos w,t and recalling the sifting property of delta
functions [that is, f(2)6(t — to) = f(t0)6(¢ — to)]. For result

(23), we have from the last relation in (21b) with H(w) =1
and w = w;

Fcos(wst + ¢y) } = 2 F{coswyt}

which gives the result by taking ¢, = /2 and recalling that
cos(wst + 7/2) = —sinwsd.
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