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Transmission Response Measurements
of Frequency-Translating Devices
Using a Vector Network Analyzer

Christopher J. Clark, Andrew A. Nloulthrop, Michael S. Muha, and Christopher P. Silva, h4ember, IEEE

Absfract—A new method for accurately determining the trans-
mission response of frequency-translating devices (FTD’s) is pre-
sented. The absolute amptitude and phase of the FTD under test
is obtained using a vector network analyzer (VNA) and two test
FTD’s, where one FTD must have reciprocal frequency response
characteristics. The characterization of single-sideband (SSB)
FTD’s is obtained in a straightforward manner by combining
data from three VNA two-port swept measurements. The char-
acterization of double-sideband (DSB) FTD’s can be performed in
the same manner as for SSB FTD’s, or, more accurately, by com-
bining data from six two-port swept baseband measurements. A
complete analysis of the characterization method using low-pass
equivalent (LPE) signals and systems is presented, aloug with the
development of the appropriate data reduction procedures needed
to arrive at the de-embedded LPE FTD transmission responses.
The validation and accuracy of the method is demonstrated with
results for both SSB and DSB FTD’s operating at 20 GHz.

I. INTRODUCTION

T HE MEASUREMENT of the transmission response of
devices in a communications channel is essential for

accurate systems modeling. Both the amplitude and phase re-
sponse are needed to assess the extent of signal distortion. The
most common tool for characterizing nonfrequency-transladng

components is the vector network analyzer (VNA). Due to
their design and error correction capabilities, they are very fast
and accurate. Frequency-translating devices (FTD’ s), such as
mixers, are more difficult to characterize due to the frequency
offset between input and output, and hence cannot be measured
by a VNA alone, The technique described in this paper uses
test FTD’s (which we will take to be mixers for the rest of this
paper) so that the frequency at the reference and test channels
is the same. In this way, VNA’s can be used to characterize
FTD’s with accuracies near those obtained for non-FTD’s.

The most common FTD measurement technique uses a
network analyzer and a reference test mixer to obtain the
amplitude and phase match between FTD’s [1]. This technique
is limited in that it only provides the absolute difference be-
tween FTD’s over a specified frequency range. In an extension
of this technique, the transmission response of an FTD can
be estimated relative to a “gold standard.” The disadvantage
of this approach is that the accuracy will always be limited
to how well the standard has been characterized. Scalar

network analyzers can be configured to accurately obtain the

conversion loss of FTD’s [2]. However, this technique does
not completely characterize an FTD since phase information
is not included. A technique has recently been developed that
uses a microwave transition analyzer (MTA) [3]. The MTA
technique uses AM or FM envelope delay to characterize
SSB FTD’s to 40 GHz, without the need for reference or
test mixers. As a result, this technique has the additional

capability of characterizing FTD’s with inaccessible internal
local oscillators (LO’s). Compared to the new technique

described in this paper, the limitations of the MTA technique
are that h cannot characterize DSB FTD’s and exhibits lower

measurement speed and accuracy for SSB FTD’s [4].
This paper presents a new method for accurately obtaining

the transmission response of FTD’s, which can range from
a simple mixer to a complete communications channel with
offset frequencies. The technique uses the VNA and provides
an inferred response based on several measurements involving
the swapping of test mixers. Only two test mixers are required
in addition to the device-under-test (DUT), and one FTD
must provide reciprocal frequency response characteristics. In

a typical communications channel, FTD’s are often operated

as single-sideband (SSB) mixers in frequency converters,
However, FTD’s are also often used as double-sideband (DSB)
mixers in modulators and demodulators. For example, in a
biphase-shift-keying modulator, a DSB mixer is often used
to upconvert a baseband digital signal. The method described
in this paper applies to both SSB and DSB FTD’s. This is
the only method known by the authors for characterizing both
the amplitude and phase response of a DSB FTD. It will be
shown that the measurement of SSB FTD’s can be performed

quickly and accurately with only three VNA measurements.
The measurement of DSB FTD’s can be accomplished in
two ways, defined by the choice of frequency range for the
VNA swept measurement. The paper covers the test system
configuration, signal analysis, and measurement results for this
new approach. The validation and accuracy of the approach
is demonstrated with results for both SSB and DSB FTD’s
operating at 20 GHz.

II. TEST SYSTEM CONFIGURATION
Manuscript received April 2, 1996. 1

The test setup for the measurement of FTD’s is shown in
The authorsare with The AerospaceCorporation,Los Angeles,CA 90009

USA. Fig. 1. For our work, we used a standard HP 8510C VNA
Publisher Item Identifier S 0018-9480(96)08546-8. which is capable of measurements from 0.05 to 50 GHz.
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Fig. 1. General FTD test configuration.

In addition to the DUT and the VNA, a minimum of two

test mixers, three filters, and four attenuators are used. It
is recommended that the VNA perform its measurements at
the lower of the two inputioutput FTD frequencies [e.g., the
intermediate frequency (IF) of a mixer]. The configuration

shown in Fig. 1 is therefore an example of a measurement of

an upconverting DUT. The phase shifter on one LO arm is only
required for one of the two DSB converter characterization

methods. The test mixers are required to translate the first
device’s output back to the original input frequency. The
filters and attenuators are used to minimize measurement
error. The reference plane for the two-port measurement is
located at points A and B. A full two-port calibration allows
for very accurate results because the VNA measurements
automatically incorporate full 12-term error correction. It

should be emphasized that only a transfer function for each

FTD is derived by this method; the VSWR effects between the

two FTD’s are not removed. Thus, these results should only be
applied when the DUT is embedded in a well-matched system.

Note that the technique requires that the DUT either has an
external LO input or provides its internal LO as an output.
This is necessary for the VNA to perform a phase coherent
measurement. All the data collection and analysis presented
here have been fully automated using software routines written
in the LabVIEW@. application [5]. This greatly simplifies the
measurement procedure and reduces the possibility of operator
error.

A. SSB FTD Measurement Description

The transmission response of an SSB DUT can be inferred
from the overall response of the DUT with a combination of
test mixers. A minimum of two test mixers must be used,
and additional test mixers can be used to improve accuracy.
For SSB characterization, the IF filters shown in Fig. 1 are
bandpass. A full two-port VNA measurement provides two
transmission responses (.s21 and S12) for each mixer combina-
tion test case. When two test mixers are used, three test cases

IF Filter

‘B

provide the following six results:

MA: DUT + Test Mixer 1 (s.21)

~A : Test Mixer 1 + DUT (S12)

MB: DUT + Test Mixer 2 (s21 )

JWB,: Test Mixer 2 + DUT (slz)

ikfC: Test Mixer 1 + Test Mixer 2 (szl)

MC,: Test Mixer 2 + Test Mixer 1 (slj)

where M.y = MX (w) represents the measured transfer func-
tion. Assuming DUT and test mixer reciprocity, our analysis
will show that eight low-pass equivalent (LPE) responses can
be calculated for the DUT (to within a fixed phase offset)

(1)

where R = R(w) represents the amplitude (dB) or phase
(degrees) portion of the corresponding total baseband equiv-
alent measured response M(u + uU), where WUis the center
frequency of the sweep; RDUT is the calculated LIPE response
of the DUT; and {R.Y, R.yt } means choose one of the de-
rived responses R<, (w) or RI-, (w), X = A, B, C. Equation
(1) applies to upper-sideband (USB) FTD’s where the up-
conversion uses high-side injection and the downconversion
uses low-side injection. For lower-sideband (LSB) FTD’s, the
upconversion and downconversion use hligh-side injection, and

thus RDUT (w) must be replaced by 12DuT (–w) if it is an
amplitude and –RDUT (– w) if it is a phase.

The application of this technique requires that at least one of
the FTD’s have reciprocal frequency response characteristics.

This means that one of the FTD’s must provide an identical
transmission response whether used as an upconverter or
downconverter. The best way to verify FTD reciprocity is by
checking for the equality of sz 1 and s 12 when combining two
reciprocal FTD’s back-to-back. The topology and application
of a given FTD will determine whether it possesses this
property. We have found that commonly used double- and
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triple-balanced mixers exhibit this property when operated
linearly and their ports are properly terminated. Since these
mixers also provide high dynamic range and multi-octave
bandwidth, they are ideally suited as test mixers for this
technique. Note that for each nonreciprocal FTD used, there
is a subsequent reduction in the number of valid responses
that can be calculated from (1). For example, if test mixer 1
is the only reciprocal device, the only valid DUT response is

calculated by using Rx, X = A, B, C or R~y,X = A, B, C.
The first set characterizes the DUT as an upconverter, while
the second set characterizes the DUT as a downconverter.
When there is more than one reciprocal device, the accuracy

of the derived DUT response can be increased by averaging
the multiple valid responses that result.

B. DSB FTD Measurement Description

In this case, there are two VNA measurement methods,
delineated by the choice of FTD frequency range (RF or
baseband) for the VNA sweep. In the first method (the RF

DSB method), the RF frequency range is chosen and the same
SSB technique described above can be directly applied. The
same measurement setup shown in Fig. 1 holds here as well,
except that RF bandpass filters would be placed at the VNA
ports instead, and a low-pass filter would be used between the
two DSB FTD IF pOrtS.

In most instances, more accurate results can be obtained
by the baseband DSB method, which uses the baseband FTD
frequency range for the VNA sweep, and requires a minor
modification of the SSB measurement technique. First, using

the same setup shown in Fig. 1, the VNA signal is applied to

the IF ports of the FTD’s and the IF filters at the VNA ports
are low-pass. Second, the back-to-back FTD responses must
be measured at two settings of the phase shifter that are 90°
apart at the LO frequency, in order to completely characterize
the FTD’s.

The concept behind the baseband lDSB method can be
explained as follows. The baseband VNA output signal mixes
with the LO in the DUT to produce both USB and LSB signals.
Both sidebands are downconverted in the test mixer back to
the baseband IF frequency. The sidebands recombine at any
relative phase, based on the setting of the phase shifter. For

example, if one setting of the phase shifter gives a maximum
IF signal at a given IF frequency, then a setting 90° away will
give a minimum IF signal. At the maximum IF signal, the two
sidebands are in-phase, so the IF response is the sum of the two
sideband responses. At the minimum IF signal, the sidebands
are out-of-phase, so the IF response equals the difference of the
two sideband responses. This is only an example; in practice
it is unnecessary to find the maximum IF response—any two
phase settings 90° apart are sufficient.

Our analysis will show that LPE DSB transmission response
of the back-to-back FTD pairs is given by (to within a fixed
phase offset)

rI(w)

{

4 lf~(-w) + yll~(-u)], w <0 (LSB response)——
~ l~I(LJ) + j~II(w)],3 w >0 (USB response)

(2)

where the superscript “*“ denotes the complex conjugate

operation, J is the square root of – 1, ~1 (w) is the complex
szu response of the back-to-back FTD pairs at phase shifter
setting I, and Lfll (w) is the complex S21 response of the
back-to-back FTD pairs at phase shifter setting II (setting
II – setting I = +900). Once the USB and LSB response
of the DSB FTD are separated using (2), above, the DUT
response can be derived by applying (1) (Ill replaced by II)

to each sideband independently. Thus for the baseband DSB
method, the measurement process is similar to that performed
for SSB FTD’s except that for each of the three test cases, an
additional measurement and calculation is made. The choice

between the two DSB measurement methods should be based
on achieving the best measurement accuracy and is determined
by the characteristics of the specific FDT’s under test.

C. FTD Measurement Precautions

Taking certain precautions in an FTD test setup can mini-

mize the extent of measurement errors. The first consideration

is the port termination sensitivities of the FTD’s in the test
configuration. Stand-alone mixers will often require special
care in contrast to frequency converter units where isolation is
often provided by filters, isolators, or amplifiers. As indicated
earlier, our measurement technique does not account for errors
due to VSWR interaction between the FTD’s. Consequently,
the VSWR of the test mixers should be low. In addition, it
is known that many broadband mixers are especially sensitive

to reactive port terminations [6]. The IF port is particularly

sensitive since unwanted mixing products can be reflected
back into the mixer generating erroneous secondary IF signals.

Broadband resistive attenuators placed between the FTD’s will

serve to minimize VSWR interaction, as well as terminate spu-
rious mixing products. The attenuation value required is based
on the specific characteristics of the FTD’s and termination,
and is typically 6 to 10 dB. In cases where excessive loss
cannot be tolerated, broadband isolators, diplexers, or constant
impedance filters may be used.

The second measurement consideration is filtering. The RF
filter used between the DUT and the test mixer in Fig. 1 is
required to remove unwanted mixing products. These spurious

signals generated by the DUT would otherwise interact in the
test mixer resulting in measurement error. The filter band-
width should be wider than the desired response bandwidth
yet narrow enough to adequately reject the largest spurious
signals. The response of the filter between the FTD’s and
accompanying attenuators are included in the measurement
and can be removed mathematically. The filters on the VNA
ports prevent spurious products generated by the mixers from
causing measurement error within the VNA. The response of
these filters and accompanying attenuators is removed by the
calibration process.

III. FTD MODELING AND SIGNAL ANALYSIS

This section will present the analytical foundations for our
technique, beginning with the system modeling of the two
basic FTD classes, followed by a derivation of the frequency
response for cascaded nonfrequency-translating FTD pairs. An
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Fig. 2. Translator-filter (TF) and filter-translator (FT) forms of the basic FTD model structures. (a) TF SSB model (USB case: tbe LSB case is entirely
similar). (b) TF DSB model. (c) FT SSB model (USB case: the LSB case is entirely similar). (d) FT DSB model.

LPE transmission response is then defined for each FTD class,
which can be derived from inputloutput measurements on
cascaded FTD pairs. It will be shown that such a response
for a given DUT can be calculated from a set of basic linear

algebraic equations.

A. Basic FTD Model

The basic FTD model that forms the basis for our analysis

comes in two classes: 1) the SSB model that represents the
simpler and more common mode of operation for FTD’s and
2) the DSB model whose components can be ascertained in
either of two ways. Furthermore, each class comes in two
forms: 1) the translator-filter (TF) form wherein a perfect
frequency translator is followed by a bandpass filter (which

represents the FTD transmission response characteristics) and

additionally an ideal brickwall filter for the SSB class and
2) a complementary filter-translator (FT) form in which the
bandpass filter is followed by an ideal translator which in
turn is followed by the brickwall filter for the SSB class.
The TF models are used for FTD’s that perform low-pass-to-
bandpass (LP–BP) or bandpass-to-bandpass (BP–BP) transla-
tion, whereas the FT models represent FTD’s with bandpass-
to-low-pass (BP–LP) or BP–BP translations. In practice, SSB
FTD’s perform” BP–BP translations, whereas DSB FTD’s

perform LP–BP and BP–LP conversions. We emphasize that

the basic filter in the two models representing the imperfect
translation of the FTD is always bandpass, and that both
models can be used for BP–BP translations, the one chosen

usually dictated by symmetry considerations. Fig. 2 illustrates
the TF and FT forms for each model class, and the more
common USB instance for the SSB model, as indicated by the
high-pass brickwall filter Hb. The LSB case of the SSB model
would contain a low-pass brickwall filter instead. Note from
Fig. 2 that the FT model is a symmetrical reflection of the TF
model for the DSB class, in contrast to the SSB class where
the order of the elements has been rearranged.

We now describe in detail the general FTD model by listing

the elements of each model class, including all assumptions
made.

1)

1)

2)

3)

4)

5)

6)

SSB FTD Model:

u(t) —Bandlimited input signal that is either baseband
with bandwidth BU (TF model form only) or bandpass,
centered at WUsatisfying BU < w,, (both model forms).
Ideal Multiplier—For the TF model form, provides fre-

quency translation to: (a) the frequency W. for baseband
u(t) where additionally U. ~ Bu for the LS13 case; and
(b) the frequency Wo&JU for bandpass u(t) where+ (-)
corresponds to the USB (LSB). Fc)r the FT model form,
only case (b) arises for v(t) instead, with tiJu replaced
by WV(which could equal Wo). For both model forms,
the constant ~L represents the arbitrary phase of the
LO relative to time t = O, and is included to allow

the general case in which the upconversion and the
downconversion are accomplished with separate LO’S.

v(t) —Translated bandpass output of the ideal multiplier
for the TF model form or the bandpass filter H for the
FT model form.
H(w) —Bandpass filter centered at Wh with single-sided
bandwidth Bh that filters V(w) fcr the TF model form,
U(U) for the FT model form, and represents the essential
frequency response characteristic of the FTD.
w (t) —Filtered bandpass output of H(w) for the TF
model form or output of the ideal multiplier for the FT

model form.
H6 (w) —Brickwall filter centered at wb used to remove

one of the sidebands of the DSB cmtput from H(u) (TF
model form) or W(w) (FT model form). Explicitly

{
1’ Iwl > ‘b (USB Case) (3a)~b(~) = (), Iwl <(db

{

1, Iti[ <w,
Hb(W) = (LSB Case) (3b)

o, [W[>wb

Note that Hb is an ideal high-pass (low-pass) filter for
the USB (LSB) case.
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7)

2)

y(t) —Output of the FTD that may be either baseband
(FT model form only) or bandpass (both model forms)
with corresponding bandwidth By = Bh < Bu.

DSB FTD Model: For this class, the model would sim-
ply consist of elements (l)-(4), and (7) from the SSB FTD
model.

These models will be cascaded to form a nonfrequency-

translating FTD pair and analyzed in the following subsection,
beginning with the more general DSB class, followed by the

simpler special SSB class case.

B. Cascaded FTD Model and Analysis

Fig. 3 provides a block diagram of the proposed cascaded
FTD models that apply to both the SSB and DSB classes, with
both FTD’s being of the same class. Fig. 3(a) shows the model
to be used for all SSB FTD’s and the baseband DSB method,
wherein, without loss of generality, FTD 1 is a TF-type
upconverter, while FTD 2 is an FT-type downconverter. Note

that for SSB FTD’s, FTD 1 can be either USB or LSB, whereas
FTD 2 must be LSB in order to arrive at a nonfrequency -
translating cascade. This model represents the most accurate
measurement configuration since the VNA sweeps the lower
frequency range of the given FTD’s.

Fig. 3(b) represents the model for the RF DSB method,
where the translator forms and conversion directions of FTD 1
and FTD 2 are reversed in order to gain procedural simplicity
with some possible sacrifice in measurement accuracy. In both
models, the harmonic filter 110(u) will be ideal, bandpass or

baseband as appropriate, and such that the frequency content
of the output ,z(t) is an untranslated and filtered form of that
for u(t). Also for the sake of generality, two separate LO’s
are shown, coherently locked to the same frequency LIJo,but
with possibly differing phases ~Ll and ~L2 caused by path
discrepancies between the master oscillator and the two FTD
LO inputs. Finally, when the model is to be used to represent
the operation of the FTD cascade in the reverse direction, the
harmonic filter in Fig. 3(a) would be placed after the former
input of FTD 1 instead, while all FTD’s would be modeled by

the complementary translator form for both FTD cascades.
1) Low-Pass Equivalent Signals and Systems: The analy-

sis to be presented next for each of the FTD classes will
be based on the concept of LPE signals and systems [7]-[9]
that is reminiscent of the complex phasors ttsed for sinusoidal
steady-state analysis. Before proceeding with the FTD model
analysis, we first will briefly review the relevant features of
LPE theory.

For a general real signal x(t) with a Fourier transform
X(w), we define the analytic signal or preenvelope of x(t)

by the complex signal

Zz(t) := x(t) + J&(t) (4a)

where

t(t) = H[z(t)]:= z(t) @ : = ;
/
m* dT (4b)

_wt–r

is called the Hilbert transform of x(t), and @ denotes
the convolution operator. Interpreted as a filter, the Hilbert

HO(OJ)

“’(’)=’’(’’7’(”
Cos(mo t + grL1) Cos((l+t + pL2 )

(a)

HO(o)

u,(t)=u(t) > y2(t) ==z(t)

I I
Cos(il)o t + qL1 ) m(io t + 9L2)

(b)

Fig. 3. Cascaded FTD models. The details of the individual FTD boxes have
been provided in Fig. 2. The output filter Ho (u) is used to remove unwanted
harmomcs m the signals produced by the two FT-type FTD’s. (a) Model for
SSB FTD’s and DSB FTD’s, the latter meastsred at baseband. (b) Model for
DSB FTD’s measured at RF.

transfotm is known as a quadrature jilter since it introduces a
phase shift of +(7r/2) in X(w). It can be shown that in the
frequency domain

ZZ(IW) = 2X(W) U(OJ), X(kJ) = –jX(oJ) sgn(u) (5)

where

{

1, W>o
{
1,

u(w):= (), W<()’ sgn(w) := ‘Zo (6)
–1, (J<O

are the unit step and signum functions, respectively.
Now suppose x(t) is a bandpass signal with double-sided

bandwidth 2BZ and centered at WX> Bz for positive w. Let
W. be a reference frequency such that w. – B. < W. < w.+ B=,
that k, h falls within the bandwidth of X(w) and satisfies

Wz + Bz
LIJo>

2“
(7)

The reference

frequency w=
automatically

frequency W. is usually chosen to be the center
for simplicity and since condition (7) will be
satisfied. However, our analysis will need to

allow for the more general choice of OJofor ~he FTD bandpass
filters, since their center frequency wk need not equal the LO
frequency W. that we will choose as the reference frequency
[see right-hand side of Fig, 4(a)]. Under these assumptions, it

follows that z.(t) in (4) can also be written as

zZ(t) =: ti(t)e~tiot (8a)

where

~(t) := .zz(t)e-JW”t (8b)

is termed the LPE signal or the complex envelope of z(t) with
respect to the reference frequency W.. In view of (5) and (8b),
the Fourier transform X(w) of 5(t) is given by

x(w) = 2.(W + Wo) = 2X(W + W())u(w + We). (8c)
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(a)

Fig.4. Bmdpass tolow-pass equivalentfiltertransformationwifi respectto
a referencefrequencytio. (a) General bandpass filter H(w) with amplitude
component .4(u) andphase component p(u) (asymmetric and not frequency
centered abou~tio). (b) Low-pass equivalent filter ~(ti) with corresponding
components .4(w) and @(u), and where ;(t) and J(t) are the complex
envelopes of the input z(t) and output y(t), respectively.

We can now define an LPE system as follows (see Fig. 4).
Suppose x(t) is as just described, and we have a linear system
with real impulse response h(t) corresponding to a general

bandpass filter

with double-sided bandwidth 2Bh centered at Wh > Bh and
intersecting the support of X(w) (that is, where it is not
zero), and amplitude and phase components Ah(w) and ~h (u),
respectively. Let y(t) be the bandpass output of the system,
and W. be a reference frequency lying in the supports of X(W)

and H(w) and satisfying condition (7) for both spectrums.
Then it can be shown that the original bandpass system

y(t) = h(t) @ z(t) or Y(w) = ll(w)X(w) (lOa)

is equivalent to the LPE system

i(t) = ~~@ i(t) or Y(w) = ;H(w)x(t)(lL) (lob)

where from (8c)

B(u) = z~(u + L@) = 2H(W + LLJO)U(CJ + Uo)

(11)

is the LPE filter referenced to tio.
As can be seen from Fig. 4(b), ~(w) can be asymmetrical

about w = O in general, and hence will give rise to a complex
impulse response

iL(t)= p(t)+ j(l(t) (12)

~here the real part p(t) and imaginary part q(t) of
h(t) are called the in-phase and quadrature components,

respectively. Note that in view of (12), we can also decompose
H(w) as

ii(u) = P(w)+ JQ(w) (13)

where P(w) and Q(w) would represent the in-phase and
quadrature components of ~(w), respectively, and can readily
be shown to be given by

P(w) = jzl(w) + 11*(--w)],

Q(w) = ;[fi(w) - fi”(-w)]. (14)

Note that both of these filters will have even amplitude
components and odd phase components since they correspond
to real impulse responses.

We close this subsection with some useful results for our
analysis whose derivation can be found in the Appendix.

i) Suppose the bandpass signal x(t)described above is

specialized to an amplitude and phase modulated signal
given by

x(t) = 3p(t) cos(wot + PO) – ZQ(t) sin(wo~ + PO) (Isa)

or

x(t) = Ax(t) COSIWOt + PIO+ %(t)] (15b)

where p. is an arbitrary constant; zP(t), Xq (t),A(~)\

and q.(t) are bandlimited signals with bandwidth B <
W. and related by

[1lIL(~)l =[z~(~)+&(~)]’/2, p~(t) = tall-’ -

(16a)

ZP(t) = Az(t) cos pm(t), zq(t) = Az(t) sin p~(t).
(16b)

Then the response y(t) of the general bandpass filter in

(9) to x(t) in (15) is given by

v(t) = i [%(~)cos(wOt + PO) – ii,(t) sWwO~ + PO)]

(17a)
where yP(t)and y~(t ) are formed by the following
convolutions of XP(t) and $~ (t)with the real components

p(t) and q(t) of”~(t):

%(t)= %(t)@P(t)– %(~)@d~)

Yq(~)= %(~)@P(t)+ %(t) @ d~)”

We can obtain equivalent convolutions with

p.(t) through the use of (16b) in (17b).
For the special case of (15b) in which

we

V.(t) ~ pz = constant

have that

&d

Y(t) = +[JP(4 cdwo~ + W) + v%)

(17b)

Az(t) and

(18)

(19a)
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where

!%(t) = Az(t) @ P(t)> ~,(t) = Az(t) @ q(t).

(19b)
ii) The output y(t) of a general filter Ii(w), expressed as

in (9), to the input

z(t) = Cos(%t + y?.), p. = constant (20)

is given by

y(t) = h(t) @ z(t) = A~(w.) cos[%t + P. + v(L+)]

(21a)

or expressed in the frequency domain,

Y(#) = H(u)x(w) = H(w)f-{cos(%t + p.)}

= ~(o~)e~p’ F{cos u.t} (21b)

where >{. } represents the Fourier transform operator
defined through

.F{f(t)} =: F(w) :=
/“

f(t)e’”’ dt (22)
—m

for any function ~(t) for which the definite integral is
well defined. A result similal to (21) would hold for the
case of a sine function used instead for $(t), noting the
quadrature relation

fi{sin u,t} = –j~{cos u~t}. (23)

2) DSB Cascade Model: Because the VNA utilizes a swept

tone as its stimulus signal for probing a given DUT, we will

take, without loss in generality,

ul(t) = ‘u(t) = CosLJst (24)

in the cascaded FTD models in Fig. 3 where w. > 0 is the
probing frequency. The goal here is to calculate the output
z(t) as a modulated version of u(t), thus allowing for the
identification of the transmission response of the cascaded
~D’s ~hat is characterized by the product 111(w)llz (w) or
HI(W) H2(W).

As a consequence of length constraints and so as not to

be repetitious, we will only treat in detail the mathematical

analysis of the baseband DSB method in this subsection. The
analysis. of the RF DSB method is simpler and quite analogous
in form to that for the baseband version, so that a sketch of
the arguments will suffice.

Referring to Fig. 3(a), the detailed model of FTD 1 is given
in Fig. 2(b), while that for FTD 2 is presented in Fig. 2(d),
with the appropriate subscripts applied to the various model
quantities. Using (24) and Fig. 2(b), we see that

Vi(t) = CosWstCos(wclt+ qLl) (25)

will be the output of the multiplier. Note that VI(t) is in the
form of r(t)in (15b) with

A.(t) = COSbJ5t, Po = O, $0x(t) - PL1. (26)

Because the special case (18) for p.(t) hoMs here, we have

from (19) to (21a) and (26) that the output yl (t) of thle

bandpass filter 111(w) in terms of its LPE fil (w) is given by

Yl(t) = * [Ulp(t) cos(wo~ + PL1) – Ylq(t) sin(wo~ + PL1)]

(27a)

where

~lP(t) = cosw.t @ pi(t) = AP, (~.) cos[~.t + WP,(w.)]

ihg(~) = cosws~ @ fm(~) = Z% (US) cd%~ + Pm (us)]

(27b)

and, in accordance with our convention (9), we have written

El(w) = PI(w)+ jQI(w)
= API (w)e~p”l (w) + jAQl (w)e~~ql (w) (27c)

which will also hold similarly for H2 (w), below.
Moving on to FTD 2, we have that

Uz(t) = yl(t). (28)

Noting that (27a) is already in the form of (15a) with ~P(t) =

~~l~(t), %(t) = ~~lq(t), and PO = PL1, we conclude from
(17), (27b), (28), and result i) of Section 111-B1) that the output

W2(t) of the second bandpass filter 172(w) is given by

02(t) = ~[ti2p(t)Cos(wot + WI) – ti2q(t) Sin(uOt + w2)]

(29a)

where

‘&p(t) = ;[jlp(t) @ p2(t) – ?hq(t) @ fJ2(t)l

= ;[APIP, cos(%~ + Y&)

– Aqlqj cos(~st + Pcnm)]> (29b)

&q(t) = ; [jlq(t) @ P2(t) + @J($ @ ~2(t)l

= ;[A,IP, cOs(W~ + 9,1 P,)

— AP1~2 cos(%~ + Pplq, )] (29c)

and

Ak~ := Ak(w~)A1(ws) 1k,lG{pi, P2, ql, fJ2}, k+~.
PM := $%(%) + W(w.) ‘

(29d)

In anticipation of the upcoming SSB analysis, and for the

sake of a more explicit statement of the frequency translation
operation, we reexpress v.2(t) in terms of the frequencies
W. + WS using standard trigonometric product identities as
follows:

v2(t) = #[AP,P2{cos[(w0 + ws,)t + PLI + PP,PJ

+ Cos[(wo – Ws)t + PL1 – %ml}

- Ag,q,{cos[(wo + w.)t + ~Ll + Pq,q,]

+ Cos[(w(l – Ws)t + P.L1 – %921}

- Aqlp,{sh[(q + w,)t + VU + +’q,pz]

+ sin[(wo – w~)t + P~l – Pq12221}

- Ap,q,{sk[(uo + w,)t + PLI + %,q,]

+ sin[(wo – w,)t + 9L1 – PP1g21}l. (30)
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Finally, after passing vz(t) through the second ideal mul-
tiplier to arrive at yz(t), and filtering out the harmonics at
2U0 + w, with the ideal harmonic filter 270(w), assuming that

(31)

so that 2LJ0 – u. > uo + w., we find that the output z(t) of
the cascaded DSB model is given by

where

and we have written the terms in z(t) so as to match in parallel
with the ones they were derived from in (30) (again with the
upcoming SSB analysis in mind).

We now wish to compute the Fourier transform Z(w) =

Z(UJ.) of z(t) in (32) and express it as a product of the

transmission response of the FTD pair and f{cos w,t}, the
Fourier transform of the original probing input tone. Using
result i) of Section III-B), one can determine that

where we have defined the augmented LPE filters

H$ := Hkle&JA~L

}Hkl := AkleJ~” ‘
k,l E {m, p2, m,q2}, k+z

(34b)

and Akl, qkz, and APL are as defined in (29d) and (33). From

(34) we conclude that the measured transfer function 341(uS)
through the test system is given by

Z(w,)
kj(tis) ‘= ~{coSwsJ}

= &{[HP,P~ - Hq,q, + A%,, + %,,, )le-’AWL

+ [Hplp, – Hqlq, – ~(~m, + %1C22 )]eJAPL}.

(35)

Now from (14), (29d), and (34b), it follows that

H P1P2 – H~lq, = F’IP2 – Q1Q2

= ; [fi~(w,)~z(w.) + E;(–w,)fi; (-w.)]

H qlP2 – Hp,~, = Q1P2 – P1Q2

= * [171(W.) X2(W,) – E:(–w.)B; (–w.)]

(36)

so that kfl (wS) in (35) can be more simply expressed by

ma (37,

Because the desired product filter El (wS)fi.2 (w.) is gener-
ally asymmetric, it is clear from (37) that one measurement
will not suffice to de-embed it. However, by making a second
measurement of the overall transfer function with the differ-

ence angle APL in (33) shifted by + (~/2)—which would
correspond to adjusting the phase shifter on the second LO arm
by +(m/2) (see Fig. I)—we can retrieve fil (u, )E.2 (wS) as
needed. Indeed, applying the transformation A~L ~ AWL +
Ir/2 to (37), and using the fact e+~f~iz) = +J, we conclude

that

Finally, by combining ~l(tis ) with a -t-(n/2)-shifted ver-
sion of A411(w.), that is, +]AIII(u. ), we see from (37) and
(38) that

so

fil(w, )~2(w,) =8eJApL [&fI(oJ.) + j&ifI(w. )],

o <Ld. <y. (40)

In order to obtain this product for w, <0, we use the fact that
&!fl and Jfll must correspond to real impulse responses and
hence must satisfy the symmetry property

M,(w.) = Mt”(–w.), i= Ior II. (41)

We thus conclude from (40) and (41) that

‘~L[&f~(-w.) +@&(. S >~l(w, )fi2(w, ) =8e~ –w )]

—~ <w. ~ O. (42)

Observe from (40) and (42) that the product response is
uniquely determined from the measurements except for the
fixed phase offset ApL given in (33). This offset is essentially
of no consequence to performance evaluations, since it is the

shape of the phase versus frequency that is important in these
considerations.

We now finally define the LPE DISB FTD Wansmission
response TDSB(W) by

lex&2fY!d “(43)

We comment here that the ~-factor in (43) derives from the
~-factor normally associated with LPE systems [see (lOb)],
and the ~-factor coming from the perfect spectral splitting
manifested in the ideal multiplier output.



2732 IEEE TRANSACTIONS ONMICROWAVE THEORY AND TECHNIQUES. VOL. 44, N0. 12, DECEMBER

Hence, by (40) and (42) we find that

rIDsB(u.) := TpsB(w. )TfsB(u. )

-{

+ e’ApL [Af;(-%) + @rI(-~.)1,

. –y<w, <o

~ e~~~L [MI(LJ.) + jMII(us)l,

O<w, <y
(44)

which will beused in the de-embedding procedure outlinedin

Section III-C, below.
Forthe RF DSBmethod, werefer to Fig. 3(b) andnote that

the bandpass filters that characterize the two FTD’s lie external
to the ideal translation and harmonic filtering that takes place

between them. As a result of this observation, and through
the use of simple spectral arguments, one can demonstrate
that only one measured inputfoutput bandpass transfer function
Al(us) is needed here, and it will be essentially the product

of the bandpass FTD filters Ili (us), i = 1,2, except for
factors of ~ corresponding to energy losses from the two ideal
frequency translations. It can be shown that the LPE DSB
FTD transmission response is again given by (43), whereas the

product LPE response IIDsB(tis) needed for de-embedding is
instead given by

where ~(w

IT=(w.) := 7’p(w.)Tp(LJ.)

= + AZ(u3)e~A~L,

) represents the LPE of AJ(w.) that will generally

not be symmetrical with respect to w, = O.
3) SSB Cascade Model Because many of the SSB results

will readily follow from the general analysis done for the
baseband DSB method just presented, our exposition here will
be abridged. We will cover the USB and LSB cases separately.

USE Case: For the sake of reference, the intermediate

signals in the cascaded SSB model are as follows. Referring
to Fig. 2(a), the output VI(t) of the ideal multiplier will again
be given by (25), while the output of the bandpass filter
111(w) will again be given by (27). Using standard product

trigonometric identities, W1(t) can be re-expressed to show
the frequency translation explicitly as

Wl(t) = + {Cos[(uo + W.s)t + WI + 9,1]

+ Cos[(wo – %)t + ffLl – %,]}

- * {sin[(wo + U.)t + PLI + Wqll

– sh[(~o – U.)t + pLl – ~QI]} (46)

where we have dropped the w.-argument of the amplitudes Ai
and phases pi (i = pl, ql ) of PI (w) and Q1 (w) for simplicity.
Applying the brickwall filter EIbl (w) in (3a) to W1(t) in (46),
we have the output yl @) of FTD 1:

Yl(t) = ~{Ap, cos[(~o + %)t + p~l + VP,]

– Aq, sin[(wo + u~)t + PL1 + ~q,l}. (47)

Moving on to FTD 2 [which is LSB; see Fig, 2(c)],
have that

1996

we

Uz(t) = IJ (t). (48)

At this point, we make an important simplifying observation
that will allow us to derive the output W2(t) of lZ2 (w) of
the cascaded pair immediately from the DSB case, as well as

obtaining the signals W2(t) and z(t). Note that in the cascaded
SSB model, the bandpass filter Hl (u) is followed by the
brickwall filter 17bl (w), followed finally by the bandpass filter
IIz (u). By linearity, the output of this sequence of filters is
identical to that of the sequence 111(w), H2 (w), and Hbl (w),
We thus just need to apply Hbl (w) given by (3a) to the result

V2(t) in (30) to arrive at

?lz(t) = ~{Aplpz COS[(LJO + Ws)t + qLl + ~p1p2 1

– Aq,q, cos[(Ldo+ %)t + VL1 + Vqlyj 1

— ‘91P2 ‘ln[(wo + ‘S)t + pLl + Wq1p2 1

— AP192 sd(~o + w)~ + 9L1 + 9p1q2 1}. (49)

After passing V2(t) through the second ideal multiplier to

arrive at W2(t), filtering with the second brickwall filter
H~2(w) [which is also given by (3b)] will produce y,(t).
Finally, filtering yz (t) with the same harmonic filter IJO(w)
as in the DSB case [but without condition (31) needed], (32)
gives

z(t) = +[APIPZ COS(LJs~ — @L + Wplpz )

— &q~ Cos(wst — APL + yq1q2 )

— ‘qlPz ‘ln(wst — ~PL + pqlpz )

— ‘P1q2 ‘In(wst – APL + Pplqz )1 (50)

where APL is as in (33). It follows that Z(w. ) would be as in
(34), but with the H~ terms removed. The measured transfer
function Afl (w.) =: kf(w~ ) would thus in this case be given

by

‘(US) = & ~l(Ws)fi’2(Cd,)e-~~w’
(51)

where we have used (37). In view of the additional brickwall
filter H6Z(w) of (3b) that is contained in the FTD here, the
analog of (44) is

rrusB(w. ) = Tp(w. )Ty (w.)

= h’f(w,)e~A~L, W,>o

(52)

where the LPE USB FTD transmission response is defined as

TUSB(W) := *fi(w)u(w)
(53)

and U(u) is the unit step function given in (6). The product
IIusB (w. ) is suitable for usage in the de-embedding procedure
of Section III-C, below. Hence only one measurement is
needed in this case, in contrast to the previous DSB class.



CLARK etal.: TRANSMISSION RESPONSE MEASUREMENTS OF FTD’S

LSB Case: In an entirely similar manner, the signal
waveforms for FTD 1 of the LSB case would be as follows:
VI(t) as in (25), W1(t) as in (27) and (46), while yl (t) would
be as in (47) with U. + w. replaced by W. – w. and Vi by

–Pi (z = P1, ql ). For FTD 2, we would have that (48) holds
again, V2(t) is as in (49) with W. + w~ replaced by W. —w~

and p~z by –y~l, and z(t)given by

where the harmonic filter HO(w. ) is as before with condition
(31) replaced by

O<w<wo (55)

so that 2W0 – WS > WS instead, and ApL is as in (33). Here

Z(ws) would be as in (34) with the 11~ terms deleted. The
measured transfer function Nf( WS) in this case is given by

Using the symmetry property (41) and proceeding in a manner
similar to that used for the USB case, the product response

becomes

IP(w.) = T;sB(w,)Tp(w.)

= iW*(-w.)eJAq’, ‘Wo<w’<o(57)

where the LPE LSB FTD transmission response is defined as

IP=(w) = ~ir(w)u(-w). I
(58)

C. FTD Transmission Response De-Embedment

We will now detail the de-embedding procedure for deter-
mining the LPE transmission response of a given FTD DUT.

Recall that all LPE responses have been referenced to the LO
frequency Wo. For those cases in which the sweep is bandpass
in nature and centered at w., the resulting LPE responses will
also be bandpass and centered at WU.In order to place all LPE
responses at a common dc center frequency, we introduce an
additional frequency shift of WU,as can be seen in (1). Thus,
to de-embed this response, we first define

R(w) :=
{

20 loglo A(tiU) for the amplitude
(59)

p(wu) for the phase

where T’(wU) = A(w)e~~[Uj and T(w) generically denotes

the LPE ITD transmission response for any of the sideband
cases given by (43), (53), and (58). Note that the product LPE
transmission response II(w) = T1 (W)T2 (w) will thus obey the
relation

&(w) = RI(w)+ &(W) (60)

for both the amplitude (dB) and the phase (degrees). Assume
that three product transmission responses have been obtained
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as outlined in Section 111-B2) and -B3) fen-three FTD cascades
of three distinct FTD’s of the same sideband type, denoted by
DUT, TM1 (Test Mixer 1), and TM2 (Test Mixer 2). We will
add the superscript “+/ —“ to R(w) to represent the upconver-
sion/downconversion response since these will only be equal
if the FTD has reciprocal frequency response characteristics.

Using the measured results described in Sections II-A and II-B

in (44), (45), (52), or (57), and noting property (60), we arrive

at the following relations:

R;uT + RTM1 = RA(w)

R~~l + R~uT = RA, (w)

‘;UT + ‘;M2 = RB(LJ)

R;Mz + RDUT = RBt (w)

R$M1 + RGMZ = Rc(,w)

R;M2 + R& = Ret (w)

where RX(w) corresponds to IIx (w) according
A, A’, B, B’, C, C’.

(61)

to (59), x =

If we assume only one lTD is reciprocal, say TM1, then
R~M1 = R;Ml =: RTM1. In this case, only three of the
relations in (61) can be used simultaneously to solve for the
DUT response:

R~uT = ~[RA + RB – Rc] (62a)

when used as an upconverter, and

RDUT = $ [RAI + RBi -- RCI] (62b)

when used as a downconverter. Note that if TM2 was the only
reciprocal FTD, a different set of relations in (61) would then
be chosen to arrive at

DUT = l[RA + & - @]R+ (63a)

DUT = !j[RAI + R~I -- RC].
R-

(63b)

If TM1 and TM2 are both reciprocal FTD’s, then Rc = Rc/.

As a result, both (62) and (63) provicle valid solutions for
R~uT. Finally, if all three FTD’s are reciprocal, then the valid
solutions already provided by (62) and ([53) will be augmented
by the following:

R~uT = $ [RA + RB’ – Rc] (64a)

R~uT = ~ [RA! + RB – Rc] (64b)

R+ 1[DUT = z RA + RB~ – Rc/] (64c)

RGUT = ~ [RA! + RB – RCI]. (64d)

Since R~uT = R;uT = RDUT in this case, there will be
eight valid solutions for the LPE DUT response which has
been previously presented as (l). Note that the phase offset of
(33) is not included in (l), as is evident from (1), (45), (52),
and (57), and the discussion in Sections II-A and -B for the
SSB and RF DSB method cases; and (2) by comparing (2) and
(44) for the baseband DSB method.
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Fig. 5. Eight calculated VNA amplitude and phase responses for a 20 to 8
GHz SSB downconverter. The extremely close agreement of the measurements
indicates the degree of repeatability of the SSB technique, and the frequency
response reciprocity of all three FTD’s used.

IV. MEASUREMENT RESULTS

This section of the paper provides measured results for both
SSB and DSB FTD’s. The validation of the VNA technique is
demonstrated for DUT’s which are typical of those used in mi-
crowave communication systems. Validation of the technique
is demonstrated with SSB FTD’s by comparing results with
another measurement technique using an MTA. Since they are
the only known techniques for complete, absolute frequency
response characterization of SSB FTD’s, they are compared in
terms of measurement accuracy, complexity, and applicability.
Validation of the baseband DSB method is demonstrated by
determining the response of two DUT’S differing only by the

addition of a bandpass filter and comparing their difference
with a nonfrequency translating VNA measurement of the
same bandpass filter alone. The RF DSB method is in turn
verified by showing its close agreement with the results from
the baseband DSB method.

A. SSB Downconverter Measurement

To demonstrate SSB FTD measurements, a 20 to 8 GHz
downconverter was characterized. Measurements were per-
formed with an HP 8510C VNA using a full two-port calibra-
tion. Low-side LO injection was used with a frequency of 12
GHz. The measurement bandwidth was 500 MHz, using 101
frequency points. At each frequency point, an averaging factor
of eight was implemented and no data smoothing was applied.
For the test mixers, two triple-balanced mixers (Watkins-
Johnson Model WJ-MZ501OC) with a 1.0 to 15.0 GHz IF
and a 2.0 to 26.0 GHz RF/LO were used. The eight calculated
responses for both the amplitude and phase are shown over
a 400 MHz bandwidth in Fig. 5. The tight grouping between
response curves indicates that the DUT and both test mixers
have reciprocal frequency response characteristics. Therefore
the downconverter can also be used as an upconverter with
the same frequency response. In this case, the most accurate
response for the downconverter can be obtained by averaging
the eight results shown.

B. SSB Measurement Validation

To validate the SSB FTD measurements, the same 20
to 8 GHz frequency converter was characterized using the

Fig.6. Comparison of the average of the eight calculated VNA amplitude
and phase responses in Fig. 5 with those measured directly with the MTA.

MTA technique [3]. In the MTA measurements, the envelope
delay technique was used with 2.5 MHz frequency modula-
tion. The measurement procedure has been automated in an
IBASIC program available from Hewlett-Packard (see [3]).
The calibration procedure requires only a through path for
normalization. The accuracy is therefore limited in comparison

to the network analyzer approach where full error correction
is used. For consistency, the measurements were performed
using the same calibration frequency range and amount of
averaging as was used in the VNA measurements. Measure-
ments obtained from the MTA were compared with the average
of the eight calculations from the VNA as shown in Fig. 6.
It is clear that additional trace averaging could have been

used to enhance noise reduction in the MTA measurements.
This improvement would only be obtained at the expense

of increased measurement time. The agreement between the
amplitude and phase response curves was found to be within
1.15 dB and 6.14°, respectively, over the 400 MHz band.
The difference in ripple structure between the measurement

curves is primarily due to the inability of the MTA technique
to remove the effects of VS WR interaction at the measurement
ports.

C. DSB Downconverter Measurement

To demonstrate DSB FTD measurements, a 20 GHz-to-
baseband downconverter (Watkins-Johnson WJ-M52C Mixer)
was characterized, Two additional WJ-M52C devices were
used as test mixers. As discussed earlier, the VNA mea-
surement can be performed at either the higher (RF) or
lower (baseband) input/output frequency range of the FTD’s.
For completeness, measurement of the FTD under test was
carried out using both DSB methods. The measurements
were performed with an HP 8510C VNA using full two-port
calibrations. For the RF method, the VNA sweep frequency
range for the three required measurements was 18.0 to 22.0
GHz using 401 points. For the baseband method, the VNA
sweep frequency range for the six required measurements
was 0.05 to 2.05 GHz using 201 points. An averaging factor
of eight with no data smoothing was applied for both test
configurations. A comparison of the calculated responses of
the baseband and RF test methods is shown in Figs. 7 and 8,
respectively. The good agreement between the curves indicates
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Fig.7. Amplitude response comparison of the RF and baseband DSB
measurement techniques fora20GHz-to-basebad downconvefier. The close
agreement of the curves indicates the consistency of the two approaches.
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Fig. 8. Phase response comptison forthedownconverter in Fig.7. Inthk
case, the resulting de-embedded phases were realigned by subtracting out the
starting LO phase offsets. Again, the consistency of the two DSB techniques
is borne out by the close agreement.

that both test methods provide valid results for DSB FTD’s.

Upon closer inspection, the RF method results are seen to
contain a significant amount of additional broadband noise and

are also clearly more prone to spurious noise spikes. The small
amount of ripple found for the baseband characterization is a
result of VS WR interaction and can be reduced by increasing
the amount of attenuation at the mixer ports. We have found
that with a suitable choice of mixer port attenuation, the
baseband method provides the more accurate results for most

DSB ~D’s.

D. DSB Measurement Validation

A special validation test was devised here since there was

no alternative method known to measure DSB FTD’s. A DSB
FTD with a 20 GHz LO was characterized with the baseband
DSB technique and then the same FTD was re-characterized
with a known linear network on its output. The second FI’D
response should be equal to the sum of the first FTD response
and the known added linear network response. The ports of
the FTD and linear network must be well matched, otherwise
VSWR interaction will introduce significant measurement er-
ror. For the DSB validation measurement, the DUT was a DSB
double-balanced mixer (ST Microwave Model MX1026C) and

.,o L-J.
-1 -0.5 0 0.5 1 1.5 2

Frequency (GHIz)

Fig. 9. Amplitude response of a K&L 5FV10-20600/T2000-O/O bandpass
filter derived from baseband DSB measurements compared to a direct VNA
measurement. The close agreement serves to vntidate the baseband DSB
measurement technique.

the linear network was a bandpass filter (K&L Microwave
Model 5FVI0-20600/T2000) with a center frequency of 20.6
GHz and a 3 dB bandwidth of 2.0 GHc.

The above measurements were performed and the filter
response was derived by subtraction of the two responses.
This derived response was then compared to the direct VNA
measurement of the filter alone. The agreement between the

derived and direct measurement is shown in Figs. 9 and 10 for
the amplitude and phase, respectively, and serves to validate

the technique. The results also validate the technique for
asymmetric FTD’s (note the 600 MHz offset corresponding to

the difference between the LO and filter center frequencies).
Observe that the derived response is the algebraic combination
of twelve separate VNA measurements; six for both of the
times the VNA technique was applied. Despite the build-up
of random and systematic errors caused by combining twelve
measurements, the agreement between the derived and direct
measurement is good, except on the low frequency skirt of the
filter. This disagreement is caused by the frequency offset of

the filter bandcenter relative to the LO. This frequency offset
causes the lower frequency skirt to fold on top of passband
frequencies at baseband. Hence, at baseband, small amplitude
signals from the lower frequency skirt interfere coherently
with large amplitude signals from the filter passband. Small
errors in the measurement of the large amplitude signals
cause large errors in the measurement of the small signals.
This indicates a limitation of the baseband VNA technique
applied to DSB FTDs: the accuracy is reduced if the. difference

between sidebands is more than about 10 dB. Together with the
previous comparisons presented in Section IV-C, these tests

constitute a complete validation of both DSB characterization
methods.

V. CONCLUSION

We have described a new method of obtaining the trans-
mission response of FTD’s. Both SSB and DSB FTD’s can
be characterized with accuracies approaching those of VNA
measurements of non-F’lrD’s. The technique test configuration
has been presented along with general FTD measurement
precautions. A complete detailed mathematical treatment of



2736 IEEE TRANSACTIONS ON MICROWAVETHEORY AND TECHNIQUES, VOL. 44, N0. 12>DECEMBER 1996

Frequency (G1-lz)

Fig. 10. Phase response of the same bandpass filter as in Fig. 9. Again we
observe a close agreement between the derived and direct measurement of the
response, providing further validation of the baseband DSB technique.

the technique has been presented using the concept of low-pass
equivalent signals and systems. The validation and accuracy
of the technique has been demonstrated with results for both
SSB and DSB frequency converters operating at 20 GHz.

Measurements were compared with the NITA technique for

SSB FTD’s and with nonfrequency-translating components for
DSB FTD’s.

APPENDIX

DERIVATION OF RESULTS i) AND ii) IN SECTION III-B

/ i) Given the general amplitude and phase modulated signal
in (15) where the modulation signals are bandlimited as
specified there. By trigonometric identities, ( 15b) can be

expanded to

z(t) = Az(t) COS ~z(t) COS(WOt + ~o)

– Az(t) sin pz (t) sin(wot + Po) (Al)

from which (16b) follows. From (15a), we see that

X(CJ) = *{[XP(CJ – bJO)+jXq(w – uO)]e~pO

+ [Xp(w + uo) + jXq(bJ + q)]e-~wo}. (A.2)

From the first relation in (5), (A.2) becomes

ZZ(LJ) = [Xp(u – LJO)+ jXq(LJ – w0)]e39” (A.3)

since Xi(ti – Wo) = O for u<O and X;(W + Wo) = O for
W>o, z = P, ~, using the assumption that Xj (w) = o for
Itil > tie. From (4a) and (A.3), we conclude that

i(t) = Im[zZ(t)] = Im{[oP(t) + jvz~(t)]e~tmot+~o)}

= ~P(t) sin(wot + ~o) + z~(t) Cos(uot + PO) (A.4)

where Ire(.) means the imaginary part. By (4a), (15a), and
(A.4), the preenvelope of x(t) is given by

ZZ(t) = z(t) + ji(t) = [%P(t) + jzq(t)]e~(’’’ot+ po) (A.5)

so that by (8b),

i(t) = [rP(t) + jzq(t)]e~po. (A.6)

By (4a), (8a), (lOb), (12), and (A.6), we find that

y(t) = Re[.zu(t)] = Re[jj(t)e~’’’Ot] (A.7)

where Re(.) means the real part, and

j(t)= y(t) @ ti(t)

= ib(t)+ J17(t)l @ [~p(t) + yzq(t)]e’po

= *e’p” {[z,(t) @ p(t) - ~g(t) @ dt)]

+ .Y[~,(~) @ P(t)+ %(~) @ !l(~)l}. (A.8)

Putting (A.8) in (A.7) gives (17).
The special case (19) follows from the general result by

noting that z(t) in ( 15b) with condition (18) holding is a
special case of %(t) in (15a) with

Y+(t) = Az(t), PO = pO+pz> Zq(t) = o. (A.9)

Putting (A.9) into (17) immediately gives (19).

ii) Let r(t) be as in (20) and 7 and >– 1 be the forward

and reverse Fourier transform operators. Then for a general
filter II(w), the output is given by

y(t) = h(t) @ z(t) = F-l{ H(LL))X(W)}

= 7-l{H(w) ij[e’p’6(w – w.) + e-~p’f5(ti + w.)]}

= F-l{ ~[H(w.)e~W”6(w – 0.)

+ 11–u.)e-J9’6(w + w.)]}

= ; [~(w~)eW. eWst
+ H*(OJ~)e-JW” e–W.t]

= Re[17(ws )efy’ e~’’st]

= Re{A(u~)eJIWSt+~’+~(~~)l} (A.1O)

from which (21a) follows. Relation (21b) follows from the
Fourier transform property

F{.f(t+to)} = eWJto F(U) (All)

rewriting the argument of the cosine function as follows:

()W.t+pz=w$ t+: %-to=:
s

taking f(t) = cos w.t and recalling the sifting property of delta
functions [that is, f(t)c!i(t– to)= f(to)6(t– to)].For result
(23), we have from the last relation in (21b) with H(w) E 1
andw=w~

.F{cos(bJ,st + p.)} = eJ9”>{cosw8t}

which gives the result by taking p. = 7r/2 and recalling that
cos(w. t + 7r/2) = – sinw~t.
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